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S1. Energy Consumption Analysis of attention
SNNs

S1.1. Energy Evaluation

In CNN, the times of Floating-point Operations
(FLOPs), almost all of which are Multiply-and-Accumulate
(MAC), are utilized to determine computational burden. By
contrast, the measurement of energy cost for an SNN model
is relatively complicated because the FLOPs of the first en-
coder layer are MAC, while all other Conv or FC layers are
synaptic Accumulation (AC). In this work, we employ ASA
to optimize the distribution of membrane potential, which
reduces spiking firing. Consequently, the energy increase
comes from MAC operations due to the regulation of mem-
brane potential. The energy decrease comes from the drop
in AC operations caused by sparser spiking firing.

To make a fine-grained evaluation of energy cost, simi-
lar to [7, 8], we give some additional definitions as follows:
We input all the samples on the test set into the network and
count the spike distribution. At timestep t, a Layer’s Spik-
ing Firing Rate (L-SFR) is the ratio of spikes produced over
all the neurons to the total number of neurons in that layer,
and the LASFR is averaging L-SFR across all timesteps T .

The LASFR of the vanilla SNN at n-th Conv and m-th
FC layer are Φn

Conv and Φm
FC , respectively. FLOPs of each

layer of the SNN are shown in Table S2. Thus the inference
energy cost of vanilla SNN EBase is computed as

EBase = EMAC · FL1
SNNConv+

EAC · (
N∑

n=2

FLn
SNNConv +

M∑
m=1

FLm
SNNFC),

(S1)

where N and M are the total number of layers of Conv
and FC, EMAC and EAC represent the energy cost of MAC

*These authors contribute equally to this work
†Corresponding author

and AC operation, FLn
SNNConv and FLm

SNNFC are the
FLOPs of Conv and FC layer, respectively. Refer to pre-
vious SNN works [7, 8, 23, 14, 6], we assume the data
for various operations are 32-bit floating point implemen-
tation in 45nm technology [4], in which EMAC = 4.6pJ
and EAC = 0.9pJ .

The additional MAC operations caused by the attention
modules can be divided into two parts

∆MAC = ∆MAC1 +∆MAC2, (S2)

where ∆MAC1 stems from the computation of attention
scores, ∆MAC2 comes from the regulation operation of the
membrane potentials caused by the optimization. Current
attention SNNs typically incorporate multiple dimensions
of attention modules [22, 11]. In [22], researchers integrate
three dimensions of attention, including Temporal Attention
(TA), Channel Attention (CA), and Spatial Attention (SA).
We compare the ASA module with these modules in terms
of ∆MAC1 and ∆MAC2, as shown in Table S1.

By optimizing the membrane potential, the attention
mechanism drops the spiking activity of SNNs in both Conv
and FC layers. We can easily get how much the AC opera-
tion in the network has changed by counting the LASFR of
the attention SNNs, and the computation formula is shown
in column 5 of Table S1.

Then, we can estimate the shift of the energy cost versus
the additional computational burden ∆MAC = ∆MAC1 +
∆MAC2 and the decreased AC operations ∆AC to demon-
strate the energy efficiency of the attention SNN. The abso-
lute energy shift between vanilla and attention SNNs can be
computed as

∆E = EMAC ·∆MAC − EAC ·∆AC . (S3)

We term the attention SNN energy consumption as EAtt.
Finally, to demonstrate the energy efficiency of the attention



Attention Additional Para.(↑)
Additional Computational Complexity

∆MAC1 (MAC ↑) ∆MAC2 (MAC ↑) ∆AC (AC ↓)

TA ([22]) N ·
(
2 · T · ⌊ T

rt
⌋
)

N ·
(
2 · T · ⌊ T

rt
⌋
)

T ·NConv−neuron T · (
N−1∑
n=1

FLn
Conv ·∆Φn−1

TA−Conv +
M∑

m=1
FLm

FC ·∆Φm−1
TA−FC)

CA ([22])
N∑

n=1

(
2 · cn · ⌊ cn

rc
⌋
)

T ·
N∑

n=1

(
2 · cn · ⌊ cn

rc
⌋
)

T ·NConv−neuron T · (
N−1∑
n=1

FLn
Conv ·∆Φn−1

CA−Conv +
M∑

m=1
FLm

FC ·∆Φm−1
CA−FC)

SA ([22]) N · (2 · 7 · 7) T ·
N∑

n=1
2 · 7 · 7 · hn · wn T ·NConv−neuron T · (

N−1∑
n=1

FLn
Conv ·∆Φn−1

SA−Conv +
M∑

m=1
FLm

FC ·∆Φm−1
SA−FC)

ASA (This work) N( 2T
2

r
+ 2 · 2 · 3 · 3) 2NT2

r
+

N∑
n=1

2 · 2 · 3 · 3 · hn · wn T ·NConv−neuron T · (
N−1∑
n=1

FLn
Conv ·∆Φn−1

ASA−Conv +
M∑

m=1
FLm

FC ·∆Φm−1
ASA−FC)

Table S1: Additional Model and Computational Complexity of various attention modules. Here we assume that each layer
of the network uses the attention module. Additional parameters induced by attention modules are very small compared with
baseline parameters, which can be ignored. ∆MAC1 is caused by the computation of attention weights. ∆MAC2 is induced by
the refinement of membrane potential, where NConv−neuron means the number of Conv neurons, T is timestep. ∆AC derives
from the drop of network spiking activity, where ∆Φn

TA−Conv = Φn
Conv − Φn

TA−Conv and ∆m
TA−FC = Φm

FC − Φm
TA−FC

indicate the shift of LASFR between baseline SNN and TA-SNN in n-th Conv layer and m-th FC layer, respectively. And so
on, we can get ∆Φn

CA−Conv , ∆Φm
CA−FC , ∆Φn

SA−Conv , ∆Φm
SA−FC , ∆Φn

ASA−Conv and ∆Φm
ASA−FC .

Model
FLOPs of a CONV or FC layer

Variable Value FLOP Type

CNN [12]
FLn

Conv (kn)2 · hn · wn · cn−1 · cn MAC
FLm

FC im · om MAC

SNN [8]
FLn

SNNConv T · FLn
Conv · Φn−1

Conv

MAC (n = 1)
or AC (n > 1)

FLm
SNNFC T · FLm

FC · Φm−1
FC AC

Table S2: FLOPs for CNN and SNN models. im and om
are the input and output dimensions of the FC layer, re-
spectively. When the inputs are static images, Φ0

Conv = 1.
When the inputs are event frames, Φ0

Conv is the ratio of non-
zero pixels. Moreover, Φ0

FC = ΦN
Conv .

Model Energy (Gesture) Energy (Gait-day)

Vanilla SNN [21] 1.314mJ 1.502mJ
TCSA-SNN [22] 0.536mJ (-59.2%) 0.582mJ (-61.2%)

ASA-SNN (Ours) 0.314mJ (-76.1%) 0.371mJ (-75.3%)

Table S3: The average energy consumption of diverse mod-
els on each sample of Gesture and Gait-day. The propor-
tions in parentheses represent rREC .

SNNs, we define the relative energy change ratio rREC as

rREC =
∆E

Ebase
=

EMAC ·∆MAC − EAC ·∆AC

Ebase
. (S4)

S1.2. Comparison of Energy Consumption between
Attention SNNs

It can be seen from Eq. S3 that only when ∆E < 0,
plugging an additional attention module can reduce energy
cost. Thus, we need to try our best to make the benefit
(energy reduction by reducing spikes, EAC · ∆AC) out-
weigh the cost (additional energy consumption from atten-

tion, EMAC · ∆MAC). As shown in Table S1, the mem-
brane potential of each neuron at all time steps should be
regulated once for each additional attention dimension, i.e.,
T ·NConv−neuron operations of MAC should be added. In
Table S3, we give the average energy consumption of a sam-
ple of various models. As can be observed, ASA-SNN con-
sumes the least amount of energy because we only employ
the spatial attention module, which lowers ∆MAC .

S2. Datasets and Experimental Setup
S2.1. Datasets

DVS128 Gesture[1]. The DVS128 Gesture dataset is
recorded by a DVS128 camera, which has the temporal res-
olution in µs level and 128×128 spatial resolution and con-
tains 11 kinds of hand gestures from 29 subjects under 3
kinds of illumination conditions. It records 1342 samples
of 11 gestures, and each gesture has an average duration of
6 seconds.

DVS128 Gait-day[17]. The DVS128 Gait-day dataset
is recorded by a DVS128 camera, which has the temporal
resolution in µs level and 128 × 128 spatial resolution and
contains various gaits from 21 volunteers (15 males and 6
females) under 2 kinds of viewing angles. It records 4200
samples, and each gait has an average duration of 4.4 sec-
onds.

DVS128 Gait-night[18]. The DVS128 Gait-night
dataset is recorded to investigate if the event camera is able
to capture human gaits in low-light conditions. In contrast
to Gait-day, Gait-night contains various gaits from 20 vol-
unteers, and each volunteer contributed 200 samples of gait.

DailyAction-DVS[10]. The DailyAction-DVS dataset
comprises 1440 samples of 15 subjects acting 12 different
actions. Two different lighting setups, including LED light
and natural light, were used to record the motions. Under



Model Architecture-Details
Input-MP4

-64C3
LIF-SNN-3 [21] -128C3-BN-AP2

-128C3-BN-AP2
-256FC-Output

Input
-128C3-BN-MP2
-128C3-BN-MP2

LIF-SNN-5 [3] -128C3-BN-MP2
-128C3-BN-MP2
-128C3-BN-MP2

-512FC-AP10-Output
Input

-64C7-BN-MP3
-64C3-BN-64C3-BN-64C3-BN-128C3-BN

Res-SNN-18 [2] -128C3-BN-128C3-BN-128C3-BN-256C3-BN
-256C3-BN-256C3-BN-256C3-BN-512C3-BN
-512C3-BN-512C3-BN-512C3-BN-512C3-BN

AdaptiveAP-512FC-Output

Table S4: Details of LIF-SNN and Res-SNN-18 network
structures.

Hyper-parameter Gesture Gait-day Gait-night DailyAction-DVS
Max Epoch 200 200 150 200

Train Batch Size 32 32 32 32
Test Batch Size 4 4 4 4
Learning Rate 1e-4 1e-4 1e-4 1e-3
Threshold Vth 0.3 0.3 0.3 1
Decay factor β 0.3 0.3 0.3 0.5

Reset potential Vreset 0 0 0 0
Penalty coefficient λ 1e-8 1e-8 1e-8 1e-8

Dropout rate before FC 0 0.2 0 0
Dropout rate after LIF 0.5 0.5 0 0

Reduction factor r 2 2 2 2

Table S5: Hyper-parameter setting in Gesture, Gait-day,
Gait-night, and DailyAction-DVS.

identical lighting and camera location, each subject carried
out each motion. The duration of each recording is within
6s.

HAR-DVS[16]. The HARDVS dataset is collected with
a DVS346 camera whose resolution is 346 × 260. HAR-
DVS contains a total of 107,646 event streams and 300
classes of common human activities.

S2.2. Experimental Setup

In this work, we employ three network structures, includ-
ing three-layer LIF-SNN[21], five-layer LIF-SNN[3], and
Res-SNN-18[2]. The network structures of these baseline
models are given in Table S4. We use the Adam optimizer
to accelerate the training process and employ some standard
training techniques of deep learning, such as batch normal-
ization, dropout, etc. The corresponding hyper-parameters
are shown in Table S5 and Table S6.

Hyper-parameter HAR-DVS
Max Epoch 300

Train Batch Size 128
Test Batch Size 32
Learning Rate 1e-4
Threshold Vth 1
Decay factor β 0.5

Reset potential Vreset 0
Penalty coefficient λ 1e-8
Reduction factor r 2

DataAug EventMix & TrivialAugment [13]

Table S6: Hyper-parameter setting in HAR-DVS.

S3. Ablation Study on ASA Module Design
In this section, we give some design details of the ASA

module. In Step 1 of the ASA module (see Fig.3b in
the main text), temporal-channel features are aggregated
by using both average-pooling and max-pooling opera-
tions, which infer two different tensors F avg,Fmax ∈
RT×cn×1×1. We get the importance map M by

M ′ =
1

2
⊗(F avg+Fmax)+α⊗F avg+γ⊗Fmax, (S5)

M = σ
(
W n

2 (ReLU(W n
1 (M

′)))) , (S6)

where α and γ are trainable parameters which are initialised
with 0.5, σ means the sigmoid function, W n

1 ∈ RT
r ×T ,

W n
2 ∈ RT×T

r , and r represents the dimension reduction
factor. M ′,M ∈ RT×cn×1×1, and we share W n

1 and W n
2

on the channel dimension.
It should be noted that there are some critical design

details here, including Eq. S5, Eq. S6, and the setting of
reduction factor r. Eq. S5 and Eq. S6 were born out of
the most classic attention network in CNNs, Squeeze-and-
Excitation networks [5], which first proposed the concept
of channel attention. In this work, Eq. S5 corresponds to
the squeeze operation, which produces a temporal-channel
descriptor by aggregating features across their spatial di-
mensions. Then, the excitation operation is followed, i.e.,
Eq. S6, which takes the squeezed information as input and
produces attention scores.

Squeeze operation comes in a variety of methods. Here
we examine the impact of some typical variants on recogni-
tion results. For Eq. S5, the original function in [5] is

M ′ = F avg, (S7)

and the following Convolutional Block Attention Mod-
ule (CBAM) [19] exploits both average-pooling and max-
pooling operations as

M ′ =
1

2
⊗ (F avg + Fmax). (S8)

Moreover, the Eq. S5 used in this work is inspired by the
Hybrid Attention Module in [9]. We present the task accu-



racies corresponding to these three squeeze designs in Ta-
ble S7. Results demonstrate that the best task performance
is obtained using Eq. S5.

Design of M ′ Eq. S5 [9] Eq. S7 [5] Eq. S8 [19]

Acc.(%) 95.2 93.4 94.8

Table S7: Ablation study on squeeze operation. Based on
three-layer SNN baseline [21], we perform ablation experi-
ments on Gesture with dt = 15, T = 60.

Excitation operation is closely related to the number
of additional parameters, the amount of computation, and
the accuracy. The vanilla excitation operation was a two-
layer fully connected neural network. Subsequent works
[15, 20] attempt to optimize from the perspective of reduc-
ing the amount of computation and parameters. In this pa-
per, after obtaining the attention matrix M ′, we did not use
these scores to optimize the membrane potential in order to
reduce the amount of additional computations. Therefore,
accurately estimating which channels are important has a
great influence on the final result. In Table S8, we report
the effect of using different excitation operations, where the
vanilla two-layer MLP works best.

Design of M Eq. S6 [5] C1D [15] SimAM [20]

Acc.(%) 95.2 93.8 92.7

Table S8: Ablation study on excitation operation. Based on
three-layer SNN baseline [21], we perform ablation experi-
ments on Gesture with dt = 15, T = 60.

Reduction factor r has a great impact on the accuracy.
We assess the impact of r in Table S9. Considering the
accuracy and the additional complexity brought by r (see
Table S1), we uniformly set r = 2 in this paper.

r 1 2 4

Acc.(%) 95.2 95.2 94.4

Table S9: Ablation study on reduction factor r. Based on
three-layer SNN baseline [21], we perform ablation experi-
ments on Gesture with dt = 15, T = 60.
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