
NDC-Scene: Boost Monocular 3D Semantic Scene Completion
in Normalized Device Coordinates Space

– Supplementary Material –

Jiawei Yao1* Chuming Li2,4* Keqiang Sun3* Yingjie Cai3 Hao Li3

Wanli Ouyang4† Hongsheng Li3,4,5†

1 University of Washington 2 The University of Sydney
3 CUHK-SenseTime Joint Laboratory 4 Shanghai AI Laboratory 5 CPII under InnoHK

jwyao@uw.edu, chli3951@uni.sydney.edu.au, wanli.ouyang@sydney.edu.au,

{kqsun@link, caiyingjie@link, haoli@link, hsli@ee}.cuhk.edu.hk

A. Architectures details

A.1. NDC-Scene

We follow [2] and exploit a pre-trained Efficient-
NetB7 [12] as the 2D image encoder.

Similar to [2, 3], we adopt DDR [7] as the basic block
in the 3D branch of our dual decoder. The proposed dual
decoder has four layers, each doubles the resolution and re-
duces the channel number by half and has a DDR block in
the 3D branch and a ResNet [5] block in the 2D branch. The
channel numbers of the final decoder layers for NYUv2 [11]
and SemanticKITTI [1] are respectively 200 and 64.

We project all the four feature maps generated by the
dual decoder to the target space, concatenate them and use
a point-wise convolution to reduce the channel number to
200 and 64, respectively for NYUv2 and SemanticKITTI,
which results in the input of the light-weight 3D UNet. The
light-weight 3D UNet consists of two convolution layers,
each with stride 2 to downscale the resolution by half and
double the channel number, and two deconvolution layers,
each doubles the scale and reduce the channel number by
half.

Similar to [2], the final completion head consists of an
ASPP module to aggregate features in multi-scales, fol-
lowed by a point-wise 3D convolution to produce the clas-
sification logits.

A.2. NDC-FA

In NDC-FA, the dual-decoder is replaced with a 2D de-
coder, a FLoSP module and a 3D UNet. For fair compari-
son, the tree modules have the same structure as that in [2].
We detail the structure of NDC-FA in Fig. 1.

*These authors contribute equally to this work.
†Corresponding authors.

Method Modality IoU mIoU

MonoScene [2] 2D 42.5 26.9
NDC-Scene(ours) 2D 44.2 29.0

LMSCNet [9] 2.5/3D 44.1 20.4
3DSketch [3] 2.5/3D 71.3 41.1
AICNet [6] 2.5/3D 43.8 23.8

(a) NYUv2 [11] (test set)

Method Modality IoU mIoU

MonoScene [2] 2D 34.2 11.1
NDC-Scene(ours) 2D 37.2 12.7

LMSCNet [9] 2.5/3D 56.7 17.6
Local-DIFs [8] 2.5/3D 57.7 22.7
JS3C-Net [13] 2.5/3D 56.6 23.8
S3CNet [4] 2.5/3D 45.6 29.5

(b) SemanticKITTI [1] (hidden test set)

Table 1: Quantitative comparsion against 2.5D/3D input SSC base-
lines. NDC-Scene is even comparable to some 2.5/3D input methods on
NYUv2 [11].

A.3. NDC-CI

In NDC-CI, the feature maps of the 3D branches in the
proposed dual decoder are voxels in camera space SR rather
than SN . Thus the voxels does not share the same 2D coor-
dinates (x, y) with the 2D pixels, i.e., in the proposed DAA
module, a 3D feature with position (x, y, d) does not has
a corresponding 2D pixels (x, y) on the 2D feature map.
For alignment, we perform bilinear interpolation on the 2D
feature map to achieve the corresponding 2D feature on
(x, y), as the input of the DAA module for the 3D feature
on (x, y, d).

B. Additional results
B.1. Performance

B.1.1 Comparison against 2.5/3D-input baselines

We also compare NDC-Scene with several original SSC
methods, i.e., requiring additional 3D input. Although
this setting is not fair because we exploit RGB-only in-
put, NDC-Scene still outperforms AICNet [6] and LMSC-
Net [9] in mIoU with an obvious gap (5.2, 8.6) and achieves
comparable IoU on NYUv2 (Tab. 1a). 3DSketch [3], with



Figure 1: NDC-FA.
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mIoU

LMSCNetrgb [9] Occ 31.38 46.70 19.50 13.50 3.10 10.30 14.30 0.30 0.00 0.00 0.00 10.80 0.00 10.40 0.00 0.00 0.00 5.40 0.00 0.00 7.07
3DSketchrgb [3] RGB & TSDF 26.85 37.70 19.80 0.00 0.00 12.10 17.10 0.00 0.00 0.00 0.00 12.10 0.00 16.10 0.00 0.00 0.00 3.40 0.00 0.00 6.23
AICNetrgb [6] RGB & Depth 23.93 39.30 18.30 19.80 1.60 9.60 15.30 0.70 0.00 0.00 0.00 9.60 1.90 13.50 0.00 0.00 0.00 5.00 0.10 0.00 7.09
MonoScene [2] RGB 34.16 54.70 27.10 24.80 5.70 14.40 18.80 3.30 0.50 0.70 4.40 14.90 2.40 19.50 1.00 1.40 0.40 11.10 3.30 2.10 11.08
NDC-Scene(ours) RGB 36.19 58.12 28.05 25.31 6.53 14.90 19.13 4.77 1.93 2.07 6.69 17.94 3.49 25.01 3.44 2.77 1.64 12.85 4.43 2.96 12.58

Table 2: Quantitative comparsion against RGB-inferred baselines and the state-of-the-art monocular SSC method on SemanticKITTI [1] (hidden test set).

a TSDF-based 3D input, outperforms ours in both mIoU
and IoU, implying the effectiveness of TSDF for SSC,
as analyzed in [10]. On the contrary, all the baselines
are clearly better than NDC-Scene in both metrics on Se-
manticKITTI (Tab. 1b). An important reason is that outdoor
SemanticKITTI contain much more detailed and irregular
objects, which relies more on the depth information accu-
racy to achieve a qualified surface geometry.

B.1.2 Quantitative performance on SemanticKITTI
(hidden test set)

The performance of NDC-Scene compared with the RGB-
inferred baselines on the hidden test set of SemanticKITTI
is in Tab. 1. We still outperform all the baselines by an
obvious gap of +2.03 in IoU and +1.50 in mIoU.

B.1.3 Qualitative performance

Additional qualitative results are also included in Fig. 3
(NYUv2) and Fig. 2 (SemanticKITTI). In NYUv2, com-
pared to other SSC baselines, NDC-Scene shows a sig-
nificant improvement in completing instance-level object
shapes (e.g. furniture, row 6; sofa and objects, row 2)
and semantics (e.g. table, row 2; sofa, row 5). In Se-
manticKITTI, NDC-Scene has better performance than
AICNetrgb [6] and 3DSketchrgb [3] and is comparable with
MonoScene [2]. Our outputs reconstruct better scene layout
shapes (e.g. vegetation, terrain and building), which are eas-

Ours(SemanticKITTI) MonoScene(SemanticKITTI)
IoU ↑ mIoU ↑ IoU ↑ mIoU ↑

θ = 0◦ 37.24 12.70 37.21 11.50
θ = 5◦ 35,87 (-1.37) 12.55 (-0.15) 33.45 (-3.76) 10.20 (-1.30)
θ = 10◦ 33.28 (-3.96) 11.28 (-1.42) 29.53 (-7.68) 8.65 (-2.85)
θ = 15◦ 31.25 (-5.99) 10.21 (-2.49) 26.42(-10.79) 7.89 (-3.61)

Table 3: Ablation study for the robustness to pose ambiguity on Se-
manticKITTI [11].

ily noticeable in rows 1-11. It also infers thin objects more
accurately, e.g. pole (row 10).

B.2. Ablation

For completeness, we also validate the robustness of
NDC-Scene to the camera pose on SemanticKITTI in
Tab. 3. Similar to that on NYUv2, the performance degra-
dation of NDC-Scene is much slower than MonoScene [2],
i.e., NDC-Scene generalize better to different choices of
camera pose.
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Input AICNetrgb [6] 3DSketchrgb [3] MonoScene [2] NDC-Scene (ours) Ground Truth

■bicycle ■car ■motorcycle ■truck ■other vehicle ■person ■bicyclist ■motorcyclist ■road ■parking
■sidewalk ■other ground ■building ■fence ■vegetation ■trunk ■terrain ■pole ■traffic sign

Figure 2: Additional qualitative results on SemanticKITTI [1] (validation set). From left to right: (a) RGB input, (b) results of AICNetrgb [6] (c) results
of 3DSketchrgb [3] (d) results of MonoScene [2] (e) ours results. NDC-Scene achieve higher voxel-level accuracy and better semantic predictions on both
datasets compared with existing SSC baselines.



Input AICNetrgb [6] 3DSketchrgb [3] MonoScene [2] NDC-Scene(ours) Ground Truth

■ceiling ■floor ■wall ■window ■chair ■bed ■sofa ■table ■tvs ■furniture ■objects

Figure 3: Additional qualitative results on NYUv2 [11]. From left to right: (a) RGB input, (b) results of AICNetrgb [6] (c) results of 3DSketchrgb [3] (d)
results of MonoScene [2] (e) ours results. NDC-Scene achieve higher voxel-level accuracy and better semantic predictions on both datasets compared with
existing SSC baselines.
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