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(a) The overall pipeline of our model.
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(b) The coarse-level segmentation for lane detection.
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(c) The fine-level point refinement. ⊕ represents superposition.

Figure 1: The overall structure realization of our sparse-point guided lane detection for the segmentation-based approach is
shown in (a). We decompose the 3D lane detection into the coarse-level segmentation for lane detection shown in (b) and the
fine-level point refinement as shown in (c).

1. Realization for Segmentation-based Ap-
proach

In the supplementary material, we present a realization
of our idea in the segmentation-based approach. As shown
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in Figure 1, the model takes an image as input to extract
multi-scale front-view features. The lowest-resolution fea-
tures are fed into a coarse-level segmentation to extract
dense BEV features at the lowest resolution. We use the
dense BEV features to predict a coarse BEV lane segmenta-
tion through an encoder-decoder-like network. We then use



a series of fine-level point refinement to gradually improve
the BEV lane segmentation from the previous scale. At each
refinement, we fetch sparse features at high resolution for
each point around lanes. The sparse BEV features are more
informative and discriminative, providing better segmenta-
tion results for each point around lanes. The sparse segmen-
tation is subsequentially superimposed on top of the dense
segmentation from the previous scale as a dense result at the
current scale.

2. Experiments
2.1. Influence of Window Size

We explore the influence of window size by changing
the sampling number along the x-/z-dimension. As shown
in Table 1, a smaller size along z-dim is better, while the
best size along x-dim is around 3 and 4.

size F1 size F1 size F1 size F1

(3,3) 53.65 (4,3) 53.66 (5,3) 53.58 (5,5) 53.37

(3,4) 53.64 (4,4) 53.5 (3,5) 53.55

Table 1: Ablation study on the window size (sx, sz) of can-
didate point sampling. sx/sz is the size along x-dim/z-dim.

2.2. Apollo 3D Lane

As PersFormer [1] did not open source the training code
on Apollo, we reproduced the model and only got F1 89.6
on balanced scenes, while based on this model, our method
got 90.7. This promotion is close to the results on ONCE-
3DLanes [2], where the benchmark is too simple to demon-
strate our priority.

2.3. Segmentation-based Approach

We analyze the performance of our method for
segmentation-based approaches on the OpneLane dataset
[1]. We take IOU as the evaluation metric and the BEV
segmentation from the official code as the ground truth. We
mainly compare our method with the segmentation branch
of PersFormer by abandoning the other 3D lane branches.
The IOU of PersFormer is 64.3, while our method achieves
66.1. The results show that our method achieves compa-
rable results while reducing the memory cost by 80% and
speeding up 2 times.
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