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This is a supplementary material for Adverse Weather
Removal with Codebook Priors.

We provide the following materials in this manuscript:

• Sec.1 the detailed architecture of the pre-trained VQ-
GAN network and our AWRCP.

• Sec.2 additional ablation studies.

• Sec.3 Comparison with existing codebook-based re-
lated works.

• Sec.4 more visual comparisons.

• Sec.5 future works, limitations and broader impacts.

1. The Detailed Architecture

1.1. Efficient Encoder Block

Our approach, the AWRCP, utilizes convolutional blocks
to efficiently extract features from degraded images in the
Encoder’s Feature Extraction stage. To construct more dis-
tinctive features, we initially double the channel dimension
relative to the input channels, as shown in Fig.1, inspired
by previous research[2]. Next, we employ a design com-
prising DWConv-LN-GELU-DWConv to capture sufficient
degradation information. Before reducing the number of
channels, we add a channel attention mechanism [6] to im-
prove channel interaction. Our encoder design is both sim-
ple and effective, as demonstrated by our model’s perfor-
mance, which ensures exceptional feature extraction capa-
bilities while maintaining low inference time and computa-
tional complexity.

1.2. Latent Transformer T

In the latent layer of AWRCP, we perform deep-level
global modeling using the vanilla transformer block, in-
cluding multi-head self-attention [3] and multi-scale feed-
forward network [4]. For the obtained feature FE ∈
RH×W×C , we reshape it to FE ∈ RN×C (N = H × W )
and adopt learnable WC×C

Q , WC×C
K and WC×C

V to project
the FE into Q (FEWQ), K (FEWK) and V (FEWV ). To
improve the local extraction ability, we also add a depth-
wise convolution with the kernel size of 3×3:

Softmax

(
QKT

√
C

)
× V + DWConv(FE), (1)

where H , W , and C represent the height, width, and num-
ber of dimensions. The Softmax operation is employed with
these dimensions. To perform these operations, we apply
multi-head self-attention using the approach described in
reference [3].

To handle the feedforward stage, we use the multi-scale
feedforward network introduced in reference [4]. This net-
work helps us model complex and diverse degradations in
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Figure 1. The overview of the proposed Efficient Encoder Block.
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Figure 2. Ablation results on Codebook Priors

Table 1. Ablation studies on Transformer Block (§1.2). We conducted a
performance comparison using the PSNR metric on the Outdoor-Rain [9]
dataset to ensure a convinced comparison.

Setting Model PSNR SSIM
i w/o DWConv 36.81 0.965
ii MLP [3] 36.66 0.964
iii ConvFFN [10] 36.64 0.964
iv LeFF [11] 36.79 0.965
v Ours 36.91 0.966

rain scenes. Specifically, we express the transformer block
as:

F ′
E = FE + MSA(LN(FE)),

F̂E = F ′
E + MFFN(LN(F ′

E)),
(2)

where F̂E refers to the feature processed by the global mod-
eling via transformer block. LN is the LayerNorm, and
the residual connection is employed followed by vanilla
ViT [3]. In the latent part of AWRCP, we only employ 4
transformer block to balance model performance and com-
plexity.

2. Additional Ablation Studies
In order to fully research the proposed AWRCP, we

present a more exhaustive set of ablation studies.

2.1. Improvements of Transformer Block

Our study aims to evaluate how different components
within the transformer block affect performance. We specif-
ically investigate the effects of excluding the DWConv
operation (w/o DWConv), using a traditional MLP-based

feed-forward network [3] instead of the presented MFFN
(MLP), employing the ConvFFN [10] instead of the pro-
posed MFFN (ConvFFN), comparing the performance of
LeFF [11] and MFFN (LeFF), and demonstrating the supe-
riority of our approach using the MFFN (Ours). Our exper-
imental results, presented in Table 1, demonstrate that the
DWConv operation improves performance by complement-
ing self-attention. Additionally, the MFFN has the most
significant impact on the PSNR metric compared to other
notable designs.

2.2. Effectiveness of Codebook Priors on Real-
world Degradations

We analyze the effectiveness of codebook priors for the
proposed AWRCP framework. In Fig. 2, we can observe
that codebook priors can help our model produce clean re-
sults with less degradations.

3. Comparison with existing codebook-based
related works

VQFR [5] is a codebook-based face restoration approach
that deeply investigates the impact of compression patch
size on both fidelity and restored quality. To address this
issue, VQFR introduces a parallel decoder to balance both.
In contrast, our work focuses on leveraging codebook pri-
ors to restore vivid texture details and accurate background
structures. FeMaSR [1] utilizes pre-trained codebooks for
blind SR and deals with potential matching errors through
a Residual Shortcut Module. However, FeMaSR disre-
gards the benefits of modulated high/low-quality features,
which, as demonstrated in our work, are essential for ad-
verse weather removal.

4. More Visual Comparisons
We conduct more visual comparisons with other state-

of-the-art methods on synthetic and real datasets to demon-
strate the excellent generalization performance of AWRCP
on adverse weather removal.

4.1. Synthectic Datasets

AWRCP can effectively eliminate complex and chal-
lenging adverse weather degradations as demonstrated in
Fig. 3, 4, 5, 6, 7, 8, 9, 10 and 11. Due to its robust high-
quality codebook prior, AWRCP performs well adverse
weather removal across multiple adverse weather degrada-
tions, including rain, haze, snow and raindrops. Addition-
ally, the ability to restore realistic texture details is also no-
ticeable compared with previous state-of-the-art methods.

4.2. Real-world Dataset

To demonstrate the impressive performance of our model
in real-world scenarios, in Fig.12,13, 14, 15, 17 and 18, we



present extensive visual comparisons for real-world adverse
weather removal. Our observations indicate that images
processed by AWRCP exhibit improved quality and effec-
tively remove complex degradations, while other algorithms
often struggle with complex rain degradations. Moreover,
AWRCP surpasses previous state-of-the-art methods in ef-
fectively handling fine-grained degradations.

5. Future Works, Limitations and Broader Im-
pacts

Moving forward, we plan to explore the potential of
codebook priors for various tasks while enhancing our over-
all architecture to make it more efficient and less computa-
tionally complex. Our AWRCP shows promising results in
handling various challenging weather conditions. Neverthe-
less, the high complexity of our approach currently limit its
deployment on edge devices and real-time processing appli-
cations.

AWRCP has demonstrated strong performance on real-
world adverse weather scenarios, indicating potential appli-
cations in various industrial tasks and applications, such as
surveillance video, autonomous driving and computational
photography. Consequently, our work has the potential to
contribute positively to both academia and industry.
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(f) Restormer (g) NAFNet (h) WeatherDiffusion (i) Ours (j) GT
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Figure 3. Visual comparisons of synthetic rain and fog image from the Outdoor-Rain [7] testing dataset. The image can be zoomed in for
improved visualization.

(f) Restormer (g) NAFNet (h) WeatherDiffusion (i) Ours (j) GT

(a) input (b) All-in-One (c) TKL&MR (d) MPRNet (e) TransWeather

Figure 4. Visual comparisons on a typical degraded image with serious snowy degradations.The proposed method outperforms other state-
of-the-art approaches for removing adverse weather effects by producing cleaner results with realistic texture details specifically for lake
ripples.
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Figure 5. Visual comparisons on a typical degraded image with dense fog and heavy rain.The proposed method generates cleaner results
with better structural quality than other state-of-the-art adverse weather removal approaches.

(f) Restormer (g) NAFNet (h) WeatherDiffusion (i) Ours (j) GT
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Figure 6. Visual comparisons of synthetic rain and fog image from the Outdoor-Rain [7] testing dataset. The image can be zoomed in for
improved visualization.
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Figure 7. Visual comparisons of the synthetic rain and fog image from the Outdoor-Rain [7] testing dataset. The image can be zoomed in
for improved visualization.

(f) Restormer (g) NAFNet (h) WeatherDiffusion (i) Ours (j) GT
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Figure 8. Visual comparisons of the synthetic snow image from the Snow100k [8] testing dataset. The image can be zoomed in for improved
visualization.
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Figure 9. Visual comparisons of the synthetic snow image from the Snow100k [8] testing dataset. The image can be zoomed in for improved
visualization.

(f) Restormer (g) NAFNet (h) WeatherDiffusion (i) Ours (j) GT
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Figure 10. Visual comparisons of the synthetic snow image from the Snow100k [8] testing dataset. The image can be zoomed in for
improved visualization.
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Figure 11. Visual comparisons of synthetic snow image from the Snow100k [8] testing dataset. The image can be zoomed in for improved
visualization.

(f) Restormer (g) NAFNet (h) WeatherDiffusion (i) Ours (j) GT
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Figure 12. Visual comparisons of the real-world raindrop image from the RainDS [9] testing dataset. The image can be zoomed in for
improved visualization.
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Figure 13. Visual comparisons of the real-world raindrop image from the RainDS [9] testing dataset. The image can be zoomed in for
improved visualization.

(b) All-in-One (c) TKL&MR (d) MPRNet (e) TransWeather
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(a) Input

Figure 14. Visual comparisons of the real-world rainy image from Internet. The image can be zoomed in for improved visualization.
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Figure 15. Visual comparisons of the real-world rainy image from Internet. The image can be zoomed in for improved visualization.
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Figure 16. Visual comparisons of the real-world rainy image from Internet. The image can be zoomed in for improved visualization.
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Figure 17. Visual comparisons of the real-world snow image from Internet. The image can be zoomed in for improved visualization.

(b) All-in-One (c) TKL&MR (d) MPRNet (e) TransWeather
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Figure 18. Visual comparisons of the real-world snow image from Internet. The image can be zoomed in for improved visualization.


