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1. Contents
In this supplementary material, we provide:
• More about our model details Sec. 2.

• More ablation Study in Sec. 3.

• Quantitative results of our approach in Sec. 4.

2. Model Details
We provide the detailed network architecture of our

MISC in Fig. 1. We use TPCN [9] as our backbone. The
feature extraction consists of 4 spatial modules and 4 dy-
namic temporal learning layers same as TPCN. Before the
prediction header, we calculate the mean features and re-
move map instances features. For the spatial module, the
point representation utilizes PointNet++ [8] with neighbor-
hood radius of [0.2m, 0.4m, 0.8m], while the voxel repre-
sentation uses Sparse BottleNeck. We use all the points in
this process without any sampling. More details about back-
bone can be found in TPCN [9].

2.1. Training Details

We train MISC for 50 epochs using a batch size of 32
with Adam [4] optimizer with an initial learning rate of
0.001, which is decayed every 15 epochs in a ratio of 0.1.

2.2. Model complexity

Method Param (M) Speed (ms)
LaneGCN 3.7 55
DenseTNT 1.1 40
mmTransformer 2.6 34
Ours 3.6 36

Table 1. The number of parameters and running time.

We provide detailed runtime speed evaluated in a sin-
gle RTX2080Ti with the model parameters shown in Tab. 1.
Compared with other state-of-the-art models, we achieve

*Work done during an internship at DeepRoute.AI.

Time shift K=1 K=6
s minADE minFDE MR minADE minFDE MR
1 1.22 2.67 0.444 0.653 0.954 0.084
2 1.23 2.67 0.444 0.654 0.958 0.082
3 1.25 2.69 0.445 0.662 0.964 0.085
4 1.25 2.70 0.446 0.667 0.969 0.086

Table 2. Ablation study results of time-shift s used by temporal
consistency

decent performance without introducing more computation
cost.

3. Ablation study

3.1. Temporal consistency

Meanwhile, we also conduct experiments to find the best
time-shift value s in the temporal consistency. As shown
in Tab. 2, choosing time shift s = 1 has already achieved
decent performance, with five out of six metrics ranking the
first. Further increasing the s will not bring much perfor-
mance gain since the driving behavior could change a lot
with large s.

3.2. Spatial consistency

Furthermore, we also measure the spatial inconsistency
against flipping and Gaussian noise with zero mean and
standard deviation of 15cm. The average spatial incon-
sistency will be 19.3cm, while the number decreases to
10.2cm with our spatial consistency constraint.

3.3. Component Study

We provide a controlled experiment to verify the effec-
tiveness of the proposed method when turning both Dual
Consistency Constraints and Teacher-Target Constraints on
at the same time shown in Tab. 3. With both modules on, the
performance of all the methods benefits a lot, about nearly
7%, demonstrating the generalization capability and effec-
tiveness of our approach. It also shows that these two mod-
ules can be independently helpful.
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Figure 1. Detailed illustration of our MISC.

Method Consistency & TTC K=1 K=6
minADE minFDE minADE minFDE

LaneGCN [5] × 1.35 2.97 0.71 1.08
✓ 1.25 2.71 0.66 0.98

TPCN [9] × 1.34 2.95 0.73 1.15
✓ 1.23 2.70 0.67 1.00

mmTransformer [6] × 1.38 3.03 0.71 1.15
✓ 1.25 2.77 0.67 0.99

DenseTNT [3] × 1.36 2.94 0.73 1.05
✓ 1.23 2.71 0.66 0.95

Table 3. Results of consistency constraints and Teacher-Target
Constraints (TTC) supervision on different state-of-the-art meth-
ods on Argoverse validation set. Performance for methods without
consistency constraints is obtained from corresponding papers or
our reproduction.

3.4. Ablation Study on Waymo Dataset

Since the scale and object types in waymo dataset and
argoverse dataset are different, we conduct experiments to
find the best time shift s for each class on Waymo Dataset.
As shown in Tab. 4, best time shift for vehicle and cyclist
will be 1, while the value will be 2 for pedestrian class.
To achieve the best performance for the overall metrics, we
finally choose s = 1 in our setting.

3.5. Results on ETH Dataset

To verify the temporal consistency on the low framerate
dataset, we conduct experiments on the ETH [7] dataset.
We report the ADE and FDE metrics for tpred = 8 and
tpred = 12 respectively. Following the common settings
used by previous methods [2], we use K = 1 and K = 20.
As shown in Tab. 5, our temporal consistency significantly

improves the performance. Choosing s = 1 works well in
most of the evaluation metrics.

4. Qualitative Analysis

We provide some visual results of MISC on the the Ar-
goverse [1] validation set in Fig. 3 as well as the Argoverse
test set in Fig. 4. These qualitative results demonstrate the
effectiveness and the high-quality predicted trajectories of
our method.

4.1. Failure Cases

We also present some failure cases on the validation set
in Fig. 2. Some possible reasons are:

• The ground-truth labels contain some noises. Since the
ground-truth labels are obtained from tracking, there
may be some id switches, leading to the sudden pertur-
bation of the agents’ location (e.g., the first and third
example in the second row of Fig. 2). Under these sce-
narios, the predicted trajectories from MISC are more
reasonable and stable without large jerks.

• The multi-modality problem. In some situations,
MISC can not predict the intention perfectly without
enough motion and map information. The first and
third example in the first row of Fig. 2 demonstrate
this phenomenon. The agent makes a lane change de-
cision without many hints in the historical information.
Thus, this can be furtherly improved by introducing
more map constraints.



Time shift
minADE ↓ minFDE ↓ MR ↓ mAP ↑

veh ped cyc veh ped cyc veh ped cyc veh ped cyc
1 0.622 0.34 0.654 1.262 0.663 1.294 0.135 0.085 0.197 0.285 0.252 0.214
2 0.625 0.33 0.660 1.263 0.662 1.296 0.135 0.084 0.200 0.283 0.252 0.215
3 0.632 0.34 0.667 1.274 0.666 1.302 0.136 0.086 0.198 0.290 0.254 0.217
4 0.634 0.33 0.672 1.278 0.670 1.303 0.137 0.086 0.199 0.288 0.253 0.217

Table 4. Ablation study results of time-shift s used by temporal consistency on Waymo Open Motion Dataset motion prediction

Time shift Dataset K=1 K=20
ADE FDE ADE FDE

0 ETH 0.69 / 0.98 1.30 / 1.98 0.51 / 0.79 1.05 / 1.66
HOTEL 0.27 / 0.33 0.46 / 0.55 0.20 / 0.25 0.36 / 0.44

1 ETH 0.65 / 0.93 1.22 / 1.86 0.47 / 0.73 0.97 / 1.55
HOTEL 0.23 / 0.29 0.42 / 0.50 0.18 / 0.23 0.33 / 0.42

2 ETH 0.65 / 0.92 1.23 / 1.88 0.48 / 0.73 1.00 / 1.56
HOTEL 0.24 / 0.27 0.43 / 0.49 0.18 / 0.25 0.34 / 0.42

3 ETH 0.66 / 0.93 1.24 / 1.89 0.48 / 0.73 0.98 / 1.57
HOTEL 0.24 / 0.30 0.43 / 0.52 0.19 / 0.24 0.34 / 0.44

4 ETH 0.66 / 0.94 1.23 / 1.89 0.49 / 0.74 0.99 / 1.58
HOTEL 0.25 / 0.31 0.44 / 0.51 0.20 / 0.25 0.33 / 0.44

Table 5. Ablation study results of time-shift s used by temporal consistency on ETH Dataset
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Figure 2. Failure cases on the Argoverse validation set. The target agent’s past trajectory is in yellow, predicted trajectory in green, and
ground truth in red.



Figure 3. The motion forecasting results on the Argoverse validation set. The target agent’s past trajectory is in yellow, predicted trajectory
is in green, and ground truth is in red.



Figure 4. The motion forecasting results on the Argoverse test set. The target agent’s past trajectory is in yellow and predicted trajectory in
green.


