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1. Appendix

In this supplementary material, we first present detailed
training convergence curve comparison of Cascade-DINO
in Section 1.1. We also provide more studies on de-
formable attention and alternative training manners. In Sec-
tion 1.2, we then show qualitative results comparisons of
our Cascade-DN-DETR to DN-DETR [3], including local-
ization quality, occlusion cases and multi-object attention
map. Finally, we provide more implementation/training de-
tails in Section 1.3.

1.1. Supplementary Experiments

Convergence Speed Comparison In Figure 1, we show
the detection results comparison between Cascade R-
CNN [1], DINO [8] (Baseline) and Cascade-DINO (Ours)
per training epoch. We sample three dataset components
UVO [6], BDD [7] and Braintumor [2] out of UDB10,
which belong to various domains in open-world, self-
driving and medical analysis. On UVO and BDD datasets,
we find that Cascade R-CNN converges faster in the first
three epochs, but its performance is quickly saturated and
surpassed by our Cascade-DINO after training for 3 epochs.
Cascade-DINO achieves stable performance growth during
training, and outperforms Cascade R-CNN and DINO con-
sistently in all three domains.

Comparison to Deformable Attention We compare Cas-
cade attention (CA) with Deformable attention (DA) in
Tab. 1, where merely replacing the Deformable attention
in DINO to Cascade attention (i.e. w/o QR) promotes the
results from 30.2 to 31.9 on UVO.
Comparison to Box-constrained Deformable Attention
In Table 2, we compare our cascade attention to both
the standard deformable attention and box-constrained de-
formable attention. We design box-constrained deformable
attention by normalizing its learnable offsets within the pre-
dicted bounding boxes. Box-constrained deformable atten-
tion slightly increases the result of standard deformable at-
tention by 0.8 AP. However, its performance is still 1.7 AP

lower than our cascade-attention. This gap may be due to
the insufficient/limited sampling points of deformable at-
tention in the box regions.

Adopting GT boxes in the Initial Training Stage We try
an alternative training manner to replace the predicted boxes
with GT boxes for constraining attention in the initial train-
ing stage. The intuition is that at the beginning stage, the
predicted boxes by learnable queries are inaccurate, which
can be replaced by the corresponding GT box via greedy
matching. We take Cascade-DINO as baseline and set the
ratio of using GT boxes at the first iteration being 25%. This
ratio then linearly decreases to 0 at the last training iteration
after 12 epochs. However, we find it leads to 3.0 AP perfor-
mance decrease (32.7 → 29.7) on UVO dataset compared to
using predicted boxes for the whole network training stage.

1.2. More Qualitative Comparisons

Visualization Comparison in Box Quality In Figure 2,
we compare the predicted box quality between baseline
DN-DETR and our Cascade-DN-DETR. On COCO vali-
dation set, we visualize the predicted boxes satisfying IoU
(to GT) thresholds 0.5 and 0.75 in the first row and second
row respectively. The predicted boxes differences are high-
lighted in red. The detected lower-quality predictions by
the baseline, such as ‘toilet’ (left example) and ‘refrigera-
tor’ (right example) are highlighted in the red boxes.

Visualization Comparison in Occlusion Cases In Fig-
ure 3, comparing to DN-DETR, we find that Cascade-DN-
DETR has a higher recall rate for detection in the challeng-
ing heavy occlusion cases. The box-constrained cascade at-
tention can better attend to the target occluded objects with
less distraction from their neighboring overlapping objects.

Visualization of Multi-object Attention Map We pro-
vide cross-attention maps for multiple objects in Fig. 4.
Cascade-DN-DETR’s query attention focuses on the most
relevant parts of the detected objects, while DN-DETR has
a more scattered attention distribution.



Figure 1. Quantitative results comparison between Cascade R-CNN [1], DINO [8] (Baseline) and Cascade-DINO (Ours) per training epoch
on UVO [6], BDD [7], Brain tumor [2]. These datasets cover three various detection application domains. Cascade-DINO achieves stable
performance growth during training, and outperforms Cascade R-CNN and DINO consistently on all three domains. Note that DINO is a
very recent work which has already been significantly sped up by the usage of denoising branch and two-stage training.
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Figure 2. Qualitative results comparison between DN-DETR [3] and our Cascade-DN-DETR on COCO validation set. The box prediction
differences are highlighted in red color. The first row shows box predictions satisfying IoU threshold (to GT box) larger than 0.5 while the
bottom row shows IoU threshold larger than strict IoU (to GT) threshold 0.75. Taking the first column as an example, the detected ‘toilet’
object by baseline DN-DETR is filtered when using strict threshold 0.75.

Table 1. Cascade attention (CA) vs. Deformable attention (DA) on
UVO. QR denotes Query Re-calibration.

Model DA CA QR AP AP50 AP75 AR
DINO [46] ✓ 30.2 46.9 30.5 63.4

✓ ✓ 31.5 47.9 32.1 63.4
Cascade-DINO ✓ 31.9 49.5 32.8 63.4

✓ ✓ 32.7 50.2 33.4 63.0

1.3. More Implementation Details

Implementation Details In the paper, we mainly adopt
DN-DETR [3] as our baseline. We use 4-scale feature maps
with the help of a deformable encoder. For the transformer
decoder, we apply cascade attention to each feature map
and perform fusion in each layer. For query recalibration,
we add one IoU head which is similar to the classification
head but the output of the IoU head has only one channel
for each query. We employ 300 queries with one pattern

Table 2. Ablation study on the box-constrained Deformable atten-
tion on UVO. Baseline: DINO with standard deformable attention
in the transformer decoder. Box-constrained deformable atten-
tion: the learnable offsets around reference points are constrained
inside the predicted boxes by normalization. Our Cascade-DINO
adopts the cascade-attention.

Model AP AP50 AP75 AR
DINO (Baseline, standard deformable attention) 30.2 46.9 30.5 63.4
Box-constrained Deformable attention 31.0↑0.8 47.2 31.7 62.8
Casacde-DINO (Ours) 32.7↑2.5 50.2 33.4 63.0

to keep the same as 300 queries of traditional DETR meth-
ods. We perform the same Hungarian matching as tradi-
tional DETR-based methods and record the IoU of matched
boxes and ground truth. We use this as the regression tar-
get for our IoU head. L2Loss is used for IoU regression.
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Figure 3. Qualitative results comparison between DN-DETR [3] and our Cascade-DN-DETR. The box prediction differences are high-
lighted in red. Compared to DN-DETR (Baseline), our Cascade-DN-DETR can better detect objects for challenging occlusion cases.

Attention maps for Multiple Objects

Object #1 in DN-DETR Object #2 in DN-DETR Object #3 in DN-DETR

Object #1 in Cascade-DN-DETR Object #2 in Cascade-DN-DETR Object #3 in Cascade-DN-DETR

Object #1
Object #2

Object #3

Figure 4. Visual comparison of cross-attention maps between DN-DETR [3] and our Cascade-DN-DETR on COCO for multiple objects.

We adopt auxiliary losses and the same loss coefficients as
other DETR methods. The loss coefficients for classifica-
tion loss, box L1 loss, box giou loss and our recalibration
loss are {1.0, 5.0, 2.0, 2.0}. For DAB-DETR [4], we also
use 4-scale feature maps and implement it by removing the
dn-part of the previous DN-DETR. For Faster-RCNN [5]
and Cascade R-CNN [1], we use the standard implementa-
tion of mmdetection.

For all dataset components in the UDB10 benchmark,
we use the default data augmentation of Faster-RCNN,
Cascade-RCNN and DETR-based methods on COCO.
Large datasets (more than 10k images) in the UDB10
benchmark are COCO, UVO, BDD100K, and EgoHands.
For them, we train DN-DETR for 12 epochs with an initial
learning rate of 1×10−5 for the backbone and 1×10−4 for
the transformer and drop the learning rate at the 10th epoch.
We use the AdamW optimizer with weight decay 1× 10−4.
We train on 8 Nvidia GeForce RTX 3090 GPUs with a total
batch size of 8. We train Faster-RCNN for 12 epochs and
drop the learning rate at the 8th and 11th epochs. For other

small datasets, we train DN-DETR for 50 epochs and drop
the learning rate at the 40th epoch. We train Faster-RCNN
for 36 epochs and drop the learning rate at the 24th and 33rd
epochs.

We also perform experiments on DINO [8] using
Resnet50 backbone. We use 900 queries for the DINO base-
line and Cascade-DINO. We employ 4-scale feature maps
from the deformable encoder. We implement Cascade-
DINO by replacing its deformable decoder with our cascade
decoder, which is the same as Cascade-DN-DETR. Since
DINO is a two-stage DETR detector, we also use the recali-
brated score to select anchors from the transformer encoder.
DINO is a strong SOTA method and we adopt the same 12-
epoch and 24-epoch training schedules as their paper. For
large datasets (more than 10k images) in the UDB10 bench-
mark, we train Cascade-RCNN, DINO, and Cascade-DINO
for 12 epochs. For other small datasets, we train Cascade-
RCNN for 36 epochs and DINO, Cascade-DINO for 24
epochs. For Box-constrained deformable attention, we also
use IoU recalibration for comparison with Cascade-DINO.



Inference Details During inference, we predict expected
IoU scores (Eq.4 of the paper) for all queries and take them
as the recalibrated scores as discussed in the paper. We per-
form cascade attention with the initial boxes and predicted
boxes of each layer. We also add cascade attention and IoU
recalibration to dn-part in training and do not use dn-part
in inference, which is the same as the original DN-DETR.
For the other inference settings, we kept the same with our
baseline methods DN-DETR and DINO.
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