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In the supplementary materials, we provide more imple-
mentation details and experimental results. We discuss the
details of differentiable rendering of the HOI scene rep-
resentation (Sec. A.1), network architectures (Sec. A.2),
scored distillation sampling of the pretrained diffusion
model (Sec. A.3), and initialization details (Sec. A.5). We
also describe how to get 2D segmentation masks from in-
the-wild clips (Sec. A.4). Then, we show generation by the
diffusion model (Sec. B.1), full quantitative results reported
in the main paper (Sec. B.2). Furthermore, we also show
supporting evidence that optimizing per-frame object poses
(Sec. B.3) and soft blending (Sec. B.4) are both important
for better performance. Lastly, we discuss our failure cases
in Sec. B.5.

A. Implementation Details

A.1. Differentiable Rendering (Sec. 3.1)

Given an HOI scene representation at a certain time t
consisting of an implicit field for the object and a mesh for
the hand, we use differentiable volumetric renderer [15] and
mesh renderer [6, 9] to get their masks (Mo,Mh) and depth
(Do, Dh). In order to supervise them with reprojection loss
with respect to the ground truth semantic masks, we blend
hand and object masks by their predicted depths to obtain
the rendered semantic masks M ≡ B(Mh,Mo, Dh, Do).

The soft blending is computed as expected light trans-
ported to the cameras, similar to blending two-layer sur-
faces of in mesh rendering [9]. More specifically, de-
note mh, dh,mo, do as the value at pixel (i, j), e.g. mh ≡
Mh[i, j]. For any pixel (i, j), the blended value is computed
as

m = B(mh,mo, dh, do) =

∑
k=0,1 wklk∑

k=0,1 wk + wbg
(1)

where subscript k denotes the sorted value of hand and ob-
ject according to the predicted depth; lk is the one-hot se-
mantic label (all 0 for background). wk is the weight com-

puted from depth:

wk = mk exp
zk −maxk,i,j Zk[i, j]

γ
, zk = mk

dfar − dk
dfar − dnear

(2)

We show in Sec. B.4 that soft blending (with loss in
semantic masks) is important for better results and per-
forms favorably to the alternative (hard blending with or-
dinal depth loss [16, 2]).

A.2. Network Architectures and Training Details
(Sec. 3.1 3.2)

Implicit field. We use Multi-Layer Perceptron (MLPs)
to implement the neural implicit surface of the object ϕ. We
borrow the architecture in the original VolSDF [15] and re-
duce the network capacity to half as we find it to suffice.
More specifically, we stack four-layer blocks of which each
is a linear layer with channel dim 64 followed by a Soft-
Plus activation. We apply positional encoding to the queried
point X with 6 frequencies.

Conditional diffusion models. The backbone of the
conditional diffusion model is based on the architecture of
the text-to-image inpainting model [8]. More specifically,
it is a 16-layer UNet with cross attentions and skip layers.
The text condition along with the diffusion step embedding
is passed to the bottleneck of the UNet and is fused with
the image feature by cross-attention. The text prompt is en-
coded as CLIP tokens [11].

Details of training diffusion model. We train the diffu-
sion model with batch size 8, learning rate 1e − 4. We use
AdamW [7] optimizer with weight decay 0.01 and train for
500k iterations. We use linear noise schedule [12].

Details of optimizing HOI scene. We follow the training
setup in a reimplementation 1 of the original paper [15]. We
optimize the scene with 1024 rays per step, and set initial

1https://github.com/ventusff/neurecon
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Table 6: Full ablation results of object reconstruction: Quantitative results for object reconstruction error using F1@5mm
and F1@10mm scores and Chamfer Distance (mm). We compare our method with variants that do not optimize per-frame
object poses (Sec.B.3), blend hand and object masks in a hard way (Sec.B.4), or do not distill certain geometry modality
(Sec. 4.2, Tab. 4)

Mug Bottle Kettle Bowl Knife ToyCar Mean

F@5 F@10 CD F@5 F@10 CD F@5 F@10 CD F@5 F@10 CD F@5 F@10 CD F@5 F@10 CD F@5 F@10 CD

no prior 0.46 0.73 1.8 0.39 0.65 2.2 0.18 0.39 9.1 0.45 0.73 1.9 0.70 0.93 0.5 0.63 0.92 0.6 0.47 0.73 2.7
hand prior 0.48 0.77 1.4 0.37 0.66 1.6 0.30 0.60 3.4 0.38 0.63 4.2 0.09 0.24 5.8 0.70 0.97 0.4 0.39 0.65 2.8
cat. prior 0.62 0.85 1.1 0.56 0.95 0.6 0.63 0.94 0.7 0.35 0.58 5.8 0.44 0.94 0.8 0.77 0.98 0.4 0.56 0.87 1.6
wo learning pose 0.67 0.86 1.0 0.39 0.85 1.1 0.26 0.62 2.4 0.79 0.99 0.3 0.58 0.95 0.7 0.82 0.99 0.3 0.59 0.88 1.0
hard blending 0.54 0.80 1.4 0.51 0.90 0.8 0.29 0.66 2.5 0.60 0.90 0.8 0.65 0.95 0.6 0.83 0.99 0.3 0.57 0.87 1.1
− mask 0.46 0.74 1.7 0.23 0.51 2.6 0.38 0.72 2.2 0.71 0.96 0.5 0.83 0.98 0.3 0.77 0.99 0.3 0.56 0.82 1.3
− normal 0.48 0.77 1.4 0.21 0.44 3.7 0.25 0.49 5.2 0.38 0.63 3.9 0.10 0.22 11.4 0.75 0.95 0.5 0.36 0.58 4.3
− depth 0.69 0.93 0.6 0.73 0.91 0.8 0.51 0.86 1.2 0.38 0.70 2.1 0.79 0.98 0.4 0.82 0.98 0.3 0.65 0.89 0.9
Ours 0.64 0.86 1.0 0.54 0.92 0.7 0.43 0.77 1.5 0.79 0.98 0.4 0.50 0.95 0.8 0.83 0.99 0.3 0.62 0.91 0.8

Table 7: Full ablation results of HOI alignment: Quan-
titative results for hand-object alignment using Chamfer
distance (mm) in hand frame (CDh). We compare our
method with variants that do not optimize per-frame ob-
ject poses (Sec.B.3), blend hand and object masks in a hard
way (Sec.B.4), or do not distill certain geometry modality
(Sec. 4.2, Tab. 4).

Mug Bottle Kettle Bowl Knife ToyCar Mean

no prior 36.0 15.4 58.2 75.7 29.5 7.1 37.0
hand prior 34.5 18.3 57.5 87.5 71.7 60.6 55.0
cat. prior 23.2 75.7 54.4 158.6 164.0 34.9 85.2
wo opt. obj pose 21.0 14.1 41.8 167.1 127.1 33.2 67.4
hard blending 26.1 29.9 89.2 205.8 116.1 59.6 87.8
− mask 36.0 28.5 60.7 504.4 97.9 41.3 128.1
− normal 394.9 284.1 107.9 235.5 286.0 296.6 267.5
− depth 14.6 12.7 45.5 270.6 160.6 24.0 88.0
Ours 18.1 15.3 42.2 101.8 91.6 23.3 48.7

learning rate 5e − 4 with exponential learning rate sched-
uler. We use Adam [4] optimizer and optimize for 50k iter-
ations per scene. Within a batch, we bias the sampled pixels
from the background, hand, and object region with proba-
bility 0.35, 0.35, 0.3 and linearly interpolate the probability
to 0.1, 0.1, 0.8 in order to spend more effective computation
on the object of interest, same as HHOR [3]. In the first 100
warm-up iterations, we turn off SDS and only optimize for
the reprojection loss and other regularization terms. This
will make the optimization more stable.

A.3. Score Distillation Sampling (Sec. 3.3)

With the pretrained diffusion model, we follow Dream-
Fusion [10] to distill the learned prior to the 3D represen-
tation. The main idea is to let the diffusion model denoise
the corrupted renderings and treats the denoised output as
‘ground truth’. More specifically, at each optimization step,
we randomly sampled a viewpoint with random rotation
from SO(3) and random camera distance. Then, we render
the geometry renderings Go, Gh from the given viewpoint

in resolution 64x64. Next, we corrupt the geometry render-
ing of the object with some noise Gi

o =
√
ᾱiGo+

√
1− ᾱiϵ

(ᾱ is the noise scheduling, ϵ is a gaussian noise) and pass
it through the diffusion model along with the geometry ren-
dering of the hand and text prompt.

Ĝi
o = Dψ(G

i
o|Gh, C) (3)

We set the classifier-free guidance scale to 4, which is
different from the original paper where a small guidance
scale cannot converge. It is probably because 2D observa-
tions provide stronger cues than text thus leading to easier
convergence.

A.4. Obtaining hand-object masks for in-the-wild
clips.

While we provide ground truth segmentation masks to
all methods on HOI4D, we obtain the segmentation masks
by off-the-shelf prediction systems [14, 1, 5] for in-the-wild
clips. More specifically, we first use a hand-object interac-
tion detector [14] to detect the location of the hand and the
active object in the first frame. Then, given the detected
bounding boxes, we use PointRend [5] to get the corre-
sponding masks. Next, we pass the masks of interest in the
first frame to a video object segmentation system STCN [1]
and obtain the tracked masks in every frame.

To automatically filter out the clips with undesirable seg-
mentation quality, we run the STCN to track forward and
backward in time and calculate the Intersection over Union
(IoU) between the initial masks and the masks after track-
ing back. We use clips with IoU higher than 40% for both
hand and object masks.

A.5. Initialization with Off-the-Shelf Predictions
(Sec. 3.3.)

We use an off-the-shelf hand reconstruction [13] to es-
timate initial camera poses T tc→h, hand shape parameter β,
and hand articulation θtA. The off-the-shelf system predicts
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Figure 10: Failure Case

per-frame 10-dim hand shape parameters βt, 48-dim hand
poses θt, and a weak perspective camera st, ttx, t

t
y . We take

the average of shape parameters across all frames to ini-
tialize the hand shape parameter. Among the 48-dim pre-
dicted hand pose, we use the 45-dim finger articulation θtA
to initialize hand articulation parameter while use the re-
maining 3-dim wrist orientation θw as the rotation com-
ponent of camera pose T tc→h. The translation component
is computed by converting the predicted weak-perspective
camera to a full-perspective camera (we use a pinhole cam-
era with a focal length of 1 and the principal point at the
center of the frame following Zhang et al. [16]). This is
to handle large perspective effects, which are common in
daily videos of indoor scenes. Given focal length f and
principal points px, py , the translation component then be-
comes lt = ((ttx−px)/s

t, (tty−py)/s
t, f/st). To put them

together, the initial camera pose in the hand frame is initial-
ized as:

T tc→h = [Rt|lt] = [Rot(θtw)|

(ttx − px)/s
t

(tty − py)/s
t

f/st

] (4)

B. Additional Results
B.1. Results of diffusion model generation

We show some conditional generations by the pre-
trained diffusion model in Fig. 11. Given the geometry
rendering of hand (i) of which row 1-4 visualize surface
normal, depth, mask, and uv coordinate, as well as a text
prompt with category information, we visualize 5 different
generations (ii-vi) from the diffusion model. Row 1-3 in col
ii-vi shows the generated geometry rendering of the object,
and row 4 visualizes overlayed hand and object masks for a
better view of the hand-object relations, i.e. our model does
not output (ii-vi 4). All examples on the left use the ground
truth pairs of hand and category information while each ex-
ample to its right uses another random category but remains
hand the same.

As shown in the figure, the generated object matched
the category information in the prompt while the genera-
tions are diverse in position, orientation, and size. Yet, all
of the hand-object interactions are realistic, e.g. different
generated kettle/mug handles all appear at the tip of the

hand. Comparing left and right examples, different cate-
gory prompts lead to different generations given the same
hand rendering. With the same prompt but different hands,
the generated objects also change appearance accordingly.
For example, in the subfigure [Left A,C], the handles appear
at the left when the hand approaches from the left and vice
versa.

Fig. 11 indicates that the learned prior is aware of both
the hand prior and the category-level prior hence being in-
formative to guide the 3D reconstruction from clips.

B.2. Category-wise results in ablations (Tab. 4)

In Tab. 4 in the main paper, we only report mean value
across all categories due to space limits. We provide quan-
titative results across all categories in Tab. 6 (object recon-
struction) and Tab. 7 (HOI alignment).

B.3. Ablation: Optimizing vs Fixing Object Pose.

While we observe that the pose of the object in contact
relative to hands T th→o does not change much, we still opti-
mize per-frame object poses to account for potential relative
motion. As reported in Tab. 6, 7 and shown on the project
page, allowing changing pose across time improves the per-
formance.

B.4. Ablation: Soft Blending

Our method obtains the final HOI semantic masks by
soft blending hand and object rendering as a weighted sum
of the labels where the weight depends on their predicted
depth. The alternative way is to select the label of the
front surface and apply additional ordinal depth loss. This
is common in optimizing the interactions of two template
meshes [16, 2]. As shown in the qualitative results on the
webpage, the alternative method generates less desirable
hand-object relations as the hand intersects with the object.
It is consistent with quantitative results in Tab. 6 and 7.

B.5. Failure Cases

We show one failure case in Fig. 10. The reconstructed
mug is in wrong orientation because only semantic masks
are used in the reprojection loss. We also struggle with con-
cavity as it is hard to be regularized from only renderings.
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