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1. Additional Experimental Results
In this section, we provide more experimental results for

completeness of our proposed method.

1.1. Transfer to Image-Text Downstream Tasks

Since images can be viewed as the single-frame videos,
we evaluate the proposed method on image-text tasks in-
cluding image-text retrieval and visual question answering.

Image-Text Retrieval We perform the Image-to-Text and
Text-to-Image retrieval on COCO datasets, and the results
are summarized in Table 1. We can observe that our method
surpasses Singularity [19] with same amount of pre-train
data, especially 1% improvement on Recall@1 for Text-
to-Image retrieval task. Moreover, although some methods
[7,24] leverage 4M dataset which contains the COCO dataset
as a part of the pre-training dataset, HiTeA can still attain
comparable results showing the good generalization ability.

∗Corresponding Author.

Method #PT Data
COCO (5K test)

TR IR
R1 R5 R10 R1 R5 R10

ViLT [16] 4M 61.5 86.3 92.7 42.7 72.9 83.1
UNITER [7] 4M 65.7 88.6 93.8 52.9 79.9 88.0
OSCAR [27] 4M 70.0 91.1 95.5 54.0 80.8 88.5
ALBEF [24] 4M 73.1 91.4 96.0 56.8 81.5 89.2
BLIP [23] 14M 80.6 95.2 97.6 63.1 85.3 91.1
ALIGN [15] 1.2B 77.0 93.5 96.9 59.9 83.3 89.8
Singularity [19] 5M 71.9 90.8 95.4 54.6 80.0 87.8
HiTeA 5M 72.4 90.9 95.4 55.6 80.6 87.8

Table 1: Comparison to existing methods on image-text
retrieval on COCO dataset. We show results for both text
retrieval (image-to-text retrieval, TR) and image retrieval
(IR).

Visual Question Answering We also evaluate our method
on visual question answering task. Table 2 concludes the
image question answering results on VQAv2 [12] datasets.
We observe that HiTeA demonstrates competitive perfor-
mance on the VQA tasks. It is worthwhile noting that our
method achieves the better performance compared to Sin-
gularity [19] same pre-training datasets, which indicates
the video-text pre-training would boost the performance of
image-text downstream tasks. However, we still see a gap
with state-of-the-art image-text pre-trained models since our
method do not use the in-domain data (e.g. COCO) during
pre-training, thus leading to the gap with SoTA performance.
One future direction is to use more image-text data during
video-text pre-training for better generalization.

1.2. Additional Ablation Studies

Impact of positive candidate words size K. We investi-
gate the effect of choosing different positive words size K
during cross-modal moment exploration. As depicted in
Figure 1, it can be observed that with the increment of K,
the performance on each dataset is increasing then start to
decrease. In addition, there is a trade-off between the choice
of K and performance with respected to different datasets,
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Figure 1: Variations in performance by changing the number of selected positive words K.

Method #PT Data test-dev test-std
ClipBERT [20] 0.2M 69.08 69.43
ViLT [16] 4M 70.94 -
VL-BART [8] 0.2M - 71.30
LXMERT [36] 4M 72.42 72.54
UNITER [7] 4M 72.70 72.91
UNIMO [26] 4M 73.79 74.02
OSCAR [27] 4M 73.16 73.44
ALBEF [24] 4M 74.54 74.70
BLIP [23] 14M 77.54 77.62
Singularity [19] 5M 70.30 70.53
HiTeA 5M 74.06 74.28

Table 2: Comparison to existing methods on VQA.

and K = 5 gives relative good results among these datasets.
It also suggests that the small K would give more determin-
istic results since the model would only select the word with
the largest similarity, thus more focusing on the single ac-
tion or object. Then, as number of positive words increased,
more accurate words are selected to align with the short-
view of video. However, the model no longer benefits from
cross-modal moment exploration when K is large enough
(i.e., K = 11 or K = 13) due to the increased noise in the
selected candidate words.

Temporal evaluation of loss terms. To further validate the
temporal dependency for the proposed method, we adopt the
shuffling test for models with different loss terms, as shown
in Table 3. Table 3 shows that our loss terms contribute
more significantly when the dataset requires more temporal
understanding. In concrete, LCME and LMTRE consistently
improve the performances of Original and Gap on more tem-
poral relied datasets (i.e. SSv2-Template and SSv2-Label).
For example, model with two loss terms largely surpasses
the baseline model in the metric of Gap by achieving 4.4
and 0.5 improvement on SSv2-Template and SSv2-Label,
respectively.

Generalization to other vision backbone. Here, we
demonstrate the generalization ability of our proposed meth-
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Figure 2: Variations in performance by adopting lan-
guage during Multi-modal Temporal Relation Exploration
(MTRE). We report the Mean Recall of Recall@1, Re-
call@5, and Recall@10.

ods by ablating that the proposed pre-training tasks on the
plain backbone. Table 4 shows that our proposed method
is generalizable to different vision backbones. In details,
we instantiate the video encoder with TimeSformer [3] pre-
trained on ImageNet-21K [34]. It can be observed both
CME and MTRE consistently improve the model perfor-
mance across the video backbones considered showing the
generalization of proposed hierarchical temporal-aware pre-
training framework. It is worth noting that, TimeSformer
generates long video tokens compared to that of Multi-scale
ViT [28], which brings extra memory cost for the multi-
modal encoder and decoder since the computation of self-
attention is quadratic. This makes TimeSformer expensive
to scale to more input frames with longer sequences. Be-
sides, we provide the computation analysis of them. The
FLOPs of TimeSformer is 98.0 GFlops while that of MViT
is 55.7 GFlops, which demonstrates that MViT outperforms
TimeSformer in terms of efficiency without compromising
video frame representation. As a consequence, we choose
MViT as our default backbone.

Influence of language for MTRE. We investigate the in-
fluence of language for multi-modal temporal relation explo-
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MSRVTT [42] SSv2-Template [19] SSv2-Label [19]
Method Original ↑ Shuffled ↓ Gap ↑ Original ↑ Shuffled ↓ Gap ↑ Original ↑ Shuffled ↓ Gap ↑
Lbase 61.7 60.8 0.9 93.5 75.1 18.4 74.6 71.9 2.7
Lbase + LCME 63.7 62.9 0.8 94.4 72.6 21.8 74.8 71.8 3.0
Lbase + LMTRE 63.0 62.6 0.4 94.1 73.0 21.1 75.8 72.2 3.6
Lbase + LCME + LMTRE 64.2 63.3 0.9 95.2 72.4 22.8 76.7 73.5 3.2

Table 3: Evaluation of proposed methods for temporal dependency with temporal shuffling test. We evaluate the performance
drop when shuffling the input during inference. “Original” and “Shuffled” denote the original and shuffled input videos,
respectively, and “Gap” is the difference between the Original and Shuffled metric. The larger "Gap" indicates the dataset
relies on temporal information, and the model utilizes more temporal information to solve the task.

Method MSRVTT DiDeMo SSv2-Template
TimeSformer (Lbase) 57.30 62.38 92.91
+ LMTRE 59.23 63.18 93.68
+ LCME 59.03 63.78 93.30
+ LCME + LMTRE 59.93 65.34 94.25

Table 4: Effectiveness of the proposed methods on different
video backbone. We use TimeSformer [3] pre-trained on
ImageNet-21K [34] to verify the generalization ability of
our proposed method. For text-to-video retrieval, the Mean
Recall of Recall@1, Recall@5, and Recall@10 is reported.
For video question answering task, we report the Top-1 ac-
curacy.

ration. Instead of utilizing the language signals, we directly
adopt the video representation vcls from the video encoder
during the learning. The results are sketched in Figure 2.
It can be observed that the model trained with multi-modal
pairs attains better performance than the model without text.
In concrete, it achieves 2.1% gains on SSv2-Template which
mainly depends on the understanding of actions, which in-
dicates that our method can better understanding the actions
via multi-modal temporal relation exploration. Besides, we
also notice that performance of the model trained with cor-
rect multi-modal pairs surpasses that of model trained by
multi-modal pairs with same text, which indicates that im-
proper video-text pair yields noisy multi-modal representa-
tion thus degrading the performance of the model.

Impact of the number of frames for fine-tuning. To fur-
ther explore the capabilities of our model, we conducted
experiments varying the number of frames used in down-
stream tasks. As depicted in Figure 3, our findings illustrate
a marked improvement in performance when utilizing 2 to
8 frames, indicating that the model benefits from greater
temporal intricacy. However, once the number of frames
surpasses a certain threshold, performance levels off, sug-
gesting that sufficient temporal details do not enhance per-
formance further.
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Figure 3: Impact of frame numbers during downstream fine-
tuning. For text-to-video retrieval, the performance is shown
as avg recall, i.e., average of R@1,5,10. For VideoQA task,
the accuracy is reported.

2. Discussion
2.1. Qualitative Analysis

We sample some videos and corresponding texts and
compute similarities between words and videos in Figure
4. As we can see in the figure, our model can effectively
capture the moments such as "spreading", "moving", and
"preparing" etc. in the video, which is essential for un-
derstanding videos. Besides, we can notice that the video
would also attend to the object that appeared in the video,
showing the capability for modeling fine-grained moment
information.

2.2. Connection to Other Fine-Grained Methods

Some efforts [18,33,44] have been made to learn the fine-
grained correlation and alignment between two modalities
by leveraging the token-wise similarities in vision-language
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Figure 4: Examples of similarities between words and videos generated by our method. Our method captures the atomic
actions in the videos as well as the object information with the help of cross-modal moment exploration.

pre-training. FILIP [44] and TERAN [33] aggregate the
maximum token similarity scores and assign the optimal
patch-word transport matrix. SCAN [18] utilizes the simi-
larity scores to attend each tokens for soft fine-grained align-
ment. These approaches are originally tailored for image-
text pre-training, which aims to locate the fine-grained static
object. However, different from image-text pre-training,
video-text pre-training needs to understand the correlation
between words and moments, which not only contains static
objects but also consists of atomic actions. Our proposed
cross-modal moment exploration leverages the short-view
of video to reflect the moment information and discover the
relationship between short-view videos and words, which
results in fine-grained moment representations for video-
language pre-training.

Besides, some other efforts [5, 39, 43] are proposed to
model the fine-grained text information by leveraging the
whole video. For example, HGR [5] constructs the text
semantic graph for hierarchical alignment, while T2VLAD
[39] and TACo [43] weight the importance of words in the
text through multiple video experts with VLAD and IDF of
words respectively. However, all of these methods are aim
to filter useful text tokens for the whole video without con-
sidering detailed temporal information in the video. Our
cross-modal exploration task captures both fine-grained
text and temporal information for modeling atomic ac-
tions and moments, which the contribution of CME task
lies in the temporal aspect and is crucial for understand-
ing the temporal details revealed in untrimmed videos for
video-language pre-training.

2.3. Limitations and Boarder Impact

Despite the effectiveness of the proposed method on vari-
ous downstream tasks, our method still has some limitations
that would make for promising directions for future work.
(1) Currently, we only pre-train our model on 5M data with

Method # of Parameter
ClipBERT [20] 137M
Frozen [2] 232M
BridgeFormer [11] 152M
All-in-one [38] 110M
VIOLET [10] 198M
ALPRO [22] 231M
Singularity [19] 209M
LAVENDER [10] 198M
HiTeA 297M

Table 5: Comparison to other models in the number of
parameters.

the base-size encoders, and the scalability of the model is
not explored which deserves more in-depth investigation in
the future. (2) Our method shares similar risks like other
pre-training methods that the pre-training data might con-
sist bias and unsafe content which requires further analysis
before the deployment.

3. Implementation Details
3.1. Number of Parameters

We include some of previous models with their parameter
counts (which were reported in the original paper or calcu-
lated by follow-up work), and we compare them with HiTeA
in Table 5. Compared with other models, our model is of
comparable model size and requires less pair of video-text
pre-training data to achieve better performance in terms of
both video-language understanding and generation.

3.2. Model Architecture

As sketched in Figure 5, our model consists two uni-
modal encoders for text and video respectively, a multi-
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Video Encoder Text Encoder

[CLS] A Caucasian boy is 
eating ice cream. He licks 
his fingers with pleasure. 

Multi-Modal Encoder Text Decoder

VTM MLM

Truncated Text

Prefix LM

VTC

[CLS] A Caucasian boy is 
eating ice cream. He 
licks … 

TextVideo

Figure 5: Architecture of the proposed HiTeA and other
pre-training objectives.

modal encoder for video-text interaction, and a text de-
coder for generation. In concrete, given an arbitrary view
of video V ∈ RT×H×W is encoder into a sequence of
embeddings: {vcls, v1, · · · , vM} ∈ R(M+1)×D, where M
is the number of flattened patches for video V , and vcls
is the embedding of the visual [CLS] token and used to
provide global representation of the video. The text en-
coder transforms the text into a sequence of embeddings:
{wcls, w1, · · · , wN} ∈ R(N+1)×D, where N is the number
of words in the text. To efficiently encode multi-modal
information while preserving unimodal information, we
fuse the video and text features from uni-modal encoders
following [21]. The output of the multi-modal encoder
{vcls,v1, · · · ,vM ,wcls,w1, · · · ,wN} ∈ R(M+N+2)×D is
fed into a transformer decoder for sequence to sequence gen-
eration, which equips HiTeA with the capabilities of both
multi-modal understanding and generation.

3.3. Pre-training Objectives

During pre-training, we also perform four pre-training
tasks including Video-Text Contrastive Learning (LVTC),
Video-Text Matching (LVTM), Masked Language Modeling
(LMLM), and Prefix Language Modeling (LPrefixLM). The
VTC task first is applied to align the unimodal representa-
tion of video and text. And the multi-modal representation
can be learned by VTM and MLM tasks. Upon on the
video-language representations obtained from multi-modal
encoder, the decoder is trained by PrefixLM loss with text
completion task.

Video-Text Contrast (VTC) Following [22, 38], we align
the unimodal encoders via this task. Specially, the softmax-
normalized video-to-text and text-to-video similarities are
computed, and we employ memory queues in MoCo [6] to
increase the number of negative samples during learning.

Formally, the video-text contrastive loss is calculated as:

Lv2t = − 1

B

B∑
i=1

log
exp(s(Vi, Ti))∑B
j=1 exp(s(Vi, Tj))

, (1)

Lt2v = − 1

B

B∑
i=1

log
exp(s(Vi, Ti))∑B
j=1 exp(s(Vj , Ti))

,

LVTC =
1

2
(Lv2t + Lt2v),

where Vi and Tj are the projected representations of vcls and
wcls for i-th video-text pair in the batch.

Video-Text Matching (VTM) This task aims to predict
whether a video and a text is paired or not based on the
multi-modal representation. As suggested in [22, 24], hard
negative video-text pairs are selected based on the similarity
of video and text during contrastive learning. Formally, the
video-text matching loss is calculated as:

LVTM = −E(W,V) log p(y|W,V), (2)

where W denotes the word tokens, and V denotes the video
features of long-view video.

Masked Language Modeling (MLM) The setup of this
pre-training task is same as that used in BERT [9], where
15% of tokens in the text are randomly masked, and the
model needs to predict the masked tokens based on the
multi-modal representation. Formally, the masked language
modeling loss is calculated as:

LMLM = −E(W,V) log p(wi|W\i,V), (3)

where wi denotes the masked word token.

Prefix Language Modeling (PrefixLM) This pretext task
requires model to complete the truncated texts based on
given videos and prefix sequence of truncated texts [21,23].
The model can be trained by maximizing the likelihood of
the truncated text in an auto-regressive manner. Formally,
the prefix language modeling loss is calculated as:

LPrefixLM = −E(W,V)

 L∑
l=Lp

log p(wl|W[Lp,l),W<Lp
,V)

 ,

(4)
where L denotes the total number of words in the text, and
Lp is the length of a prefix sequence of tokens which is
randomly selected.

3.4. Downstream Task Implementation Details

We evaluate HiTeA on various downstream video-
language tasks, including Text-to-Video Retrieval, Open-
ended VideoQA, Multiple Choice VideoQA, and Video
Captioning. The fine-tuning procedures are described as
follows:
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Dataset Optimizer Learning Rate Weight Decay LR Schedule Batch Size × # GPUs Epochs
MSRVTT-Ret [42] AdamW 2e-5 0.02 Cosine Decay 24× 8 10
DiDeMo [1] AdamW 1e-5 0.02 Cosine Decay 24× 8 20
LSMDC [35] AdamW 2e-5 0.02 Cosine Decay 24× 8 10
Activity Caption [17] AdamW 2e-5 0.02 Cosine Decay 24× 8 20
SSv2-Template [19] AdamW 5e-5 0.02 Cosine Decay 24× 8 20
SSv2-Label [19] AdamW 2e-5 0.02 Cosine Decay 24× 8 20
MSRVTT-QA [41] AdamW 2e-5 0.02 Cosine Decay 16× 8 8
MSVD-QA [41] AdamW 2e-5 0.02 Cosine Decay 16× 8 8
TGIF-FrameQA [14] AdamW 2e-5 0.02 Cosine Decay 16× 8 8
LSMDC-FIB [32] AdamW 2e-5 0.02 Cosine Decay 16× 8 8
ActivityNet-QA [46] AdamW 2e-5 0.02 Cosine Decay 16× 8 8
TGIF-Action [14] AdamW 3e-5 0.02 Cosine Decay 16× 8 56
TGIF-Transition [14] AdamW 3e-5 0.02 Cosine Decay 16× 8 30
LSMDC-MC [37] AdamW 2e-5 0.02 Cosine Decay 16× 8 10
NExT-QA [40] AdamW 2e-5 0.02 Cosine Decay 16× 8 10
MSRVTT-Caption [42] AdamW 2e-5 0.02 Cosine Decay 24× 8 10
MSVD-Caption [4] AdamW 2e-5 0.02 Cosine Decay 24× 8 10

Table 6: End-to-end fine-tuning configurations for video-language downstream tasks.

• For retrieval tasks, we jointly optimize the VTC loss
and VTM loss for video-text alignment during fine-
tuning. During inference, we first select top-k candi-
dates by computing the dot-product similarity between
the video and text features, and then reranking the se-
lected candidates based on their VTM scores. k is set
to 128 by default.

• For open-ended VideoQA, we first generate video fea-
tures and text features with two unimodal encoders, and
then fuse them with multi-modal encoder. The output
of multi-modal features are fed to text decoder for an-
swer generation. We use the language modeling loss
to optimize the model. During inference, the answer
would be generated by the text decoder.

• For multiple choice VideoQA, we treat the problem as
the text-to-video retrieval task where the correct answer
should have the highest matching probability. During
training, we compute the VTM scores for each candi-
date answer and video, then optimize the model with
cross entropy loss. During the inference, the answer
with highest VTM score is the prediction answer.

• For Video Captioning, we use the video features from
video encoder and directly feed it into text decoder
for caption generation. The language modeling loss is
utilized for model optimization.

For all above video-language downstream tasks, we re-
size video frames to 224× 224. During fine-tuning, follow-
ing [19,22], we randomly sample 12 frames for text-to-video
retrieval, 16 frames for video question answering and video
captions, and we perform temporal downsampling with fac-

tor 2 for video before feeding into the network. Here, we
sample video frames from the whole video instead of treat-
ing videos into different views. During inference, we adopt
uniform sampling for video frames. We use RandomCrop
with minimum ratio 0.5 and HorizontalFlip with 0.5 proba-
bility for data augmentation. The hyperparameters that we
used for fine-tuning on downstream tasks are summarized in
Table 6. For the video caption task, we use a prefix prompt
“A video of” to improve the quality of generated captions.

3.5. Datasets Description

In this section, we describe all of the downstream video-
language datasets used during evaluation. The details of the
datasets are represented below:

Text-to-Video Retrieval. We evaluate HiTeA on 6 popu-
lar text-to-video retrieval datasets including MSRVTT [42],
DiDeMo [1], LSMDC [35], ActivityNet Caption [17], SSv2
Template [19], and SSv2 Label [19]. Details of these
datasets: MSRVTT [42] contains 10K YouTube sourced
videos with 200K text descriptions. Following [13, 25, 30],
we train the video on 9K videos and evaluate on the rest
1K video. DiDeMo [1] contains of 10K videos from Flickr
and 4 descriptions for each video. Following [22, 25, 31],
we concatenate all of the given descriptions from the same
video as a paragraph, and evaluate the paragraph-to-video
retrieval performance. The number of video in training
set is 8K, leaving 1K for validation set and 1K for test set.
LSMDC [35] consists of 118K video clips from 202 movies,
and each clip is accompanied with a caption from video
scripts. It has 101K video clips for training and 1K clips
for testing. We use the standard splits from [35]. Activi-
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tyNet Caption [17] is built on 20K YouTube videos with
100K captions. We use the train split with 10K videos for
training, and report the performance on the val1 split with
4.9K videos. SSv2-Template and SSv2-Label [19] contain
169K videos for training and 2K videos for testing. The text
queries in SSv2-Template are templates without object in-
formation (e.g. "Throwing [something] in the air and catch-
ing it"). By contrast, SSv2-Label contains annotated text
queries with specific object information (e.g. "Throwing
keys in the air and catching it"). Therefore, SSv2-Template
mainly focuses on temporal understanding of actions, while
SSv2-Label needs a more comprehensive understanding of
both appearance and temporal dynamic.

Multiple-choice Video QA. Five datasets are evaluated for
multiple-choice video question answering tasks. TGIF-
Action and TGIF-Transition [14] are adopted to evaluate
model’s capability to recognize the repeated actions and
state transitions in short GIFs. Each video and question is
equipped with 5 candidate answers. We concatenate the
question and answer as the text and use the highest simi-
larity among the video and candidate texts. TGIF-Action
contains 18K GIFs for training and 2K for testing. TGIF-
Transitions has 47K GIF-question pairs for training and 6K
for testing. MSRVTT-MC [45] and LSMDC-MC [37] are
originally retrieval task, but reformulated as the multiple
choice video QA task. It requires the model to find the
optimal caption that describes the video out of 5 candidate
texts. NExT-QA [40] is explicitly designed for temporal and
causal understanding. Questions in the dataset are catego-
rized into three types: Descriptive, Temporal, and Causal.
Each question in the dataset are paired with 5 candidate an-
swers. Therefore, this dataset is able to evaluate model’s
ability in video question answering in different aspects.

Open-ended Video QA. For open-ended video QA, we
evaluate the model on five datasets. MSRVTT-QA is com-
posed of 243K open-ended questions over 10K videos, while
MSVD-QA [41] consists 2K videos with 47K questions.
TGIF-Frames [14] collects the answerable with just a single
frame in the video, and is divided into training set with 35K
questions and test set with 14K questions.. For LSMDC-
FiB [32], the model needs to predict a correct word for the
blank with a given video and a sentence with blank. It
contains 297K sentences for training and 30K sentences for
testing. ActivityNet-QA [46] .

Video Captioning. We use MSRVTT [42] and MSVD [4]
for video captioning evaluation. As described before,
MSRVTT is composed of 10K videos with 20 captions per
video, and MSVD contains 2K videos with around 40 cap-
tions per video. We follow the standard splits from [25,29].
During inference, we generate the caption with beam search
until the model outputs a [SEP] that indicates the end of

sentence or when it reaches the maximum generation step
40.
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