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A Theoretical framework

In this section, we propose a novel theoretical framework for analyzing the forgetting1

behaviour of the model under TFCL. First, we give the problem definition and neces-2

sary notations :3

A.1 Preliminary4

Definition 1 (The distribution of the data stream.) For a given data stream V =
⋃n

j=1 Br
j ,5

let Pxr represent the probabilistic representation of DS
r . Let Pi represent the distribu-6

tion of all previously learnt data batches {Br
1, · · · ,Br

i } drawn from V at Si.7

Definition 2 (The model risk and dH△H distance) Let H be a hypothesis space with d

Vapnik–Chervonenkis (VC) dimension. For a given distribution Pxr , the risk of a model

h ∈ H is defined as E
(
h,Pxr

) ∆
= E{x,y}∼Pxr

[
τ
(
y, h(x)

)]
. For two given distributions

Pxr and Pi, the dH△H distance between them is defined as :

dH△H
(
Pxr (x),Pi(x)

) ∆
= sup

(h,h′)∈H2

∣∣∣E(h, h′,Pxr (x)
)

− E
(
h, h′,Pi(x)

)∣∣∣ , (1)

where {h, h′} ∈ H and E
(
h, h′,Pxr

)
is defined as :

E
(
h, h′,Pxr

) ∆
= E{x,y}∼Pxr

[
τ
(
h′(x), h(x)

)]
(2)

where | · | is the absolute value and Pxr (x) is the marginal of Pxr .8

A.2 Theoretical guarantees9

Learning more components into a dynamic expansion model would improve the per-10

formance since it may capture more underlying data distributions. However, learning11

many overlapping components would not improve the performance too much but lead12

to unnecessary parameters. In this section, we study how to find a good trade-off be-13

tween the model’s size (the number of components) and generalization performance.14

One solution to induce a good trade-off is to promote the knowledge diversity among15

components during the expansion. The primary motivation for this solution is that16

maintaining the knowledge diversity among components can allow to capture more17

underlying data distributions with a minimized number of parameters. The proposed18
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SEDEM can satisfy the above condition by two approaches : (1) The proposed dy- 19

namic expansion mechanism compares the knowledge similarity between each previ- 20

ously learnt component and the current component, which guides to expand the net- 21

work architecture if the current component learns sufficiently novel knowledge. Such 22

a mechanism can promote the information diversity among components. (2) The pro- 23

posed novelty-aware sample selection approach encourages the current component to 24

learn novel samples, which further promotes the knowledge diversity among compo- 25

nents. 26

In the following, we provide the theoretical analysis to show why the knowledge 27

diversity among components can lead to a good trade-off between the model’s size and 28

generalization performance. 29

Assumption 1 Let Q = {Q1, · · · , Qc} be a dynamic expansion model with c compo- 30

nents at the training step (Ti). Let Saj
be the training step that Qj was trained on and 31

Caj
was the associated memory buffer. We assume that (Eq.(7) of the paper) is the op- 32

timal component selection criterion. Then we can view the dynamic expansion model 33

Q as a single model h trained on all previously learnt memories {Ca1 , · · · , Cac−1} 34

and the current memory Ci at Si, where Cac
= Ci. Let PCa1,··· ,ac−1

⊗Ci
represent the 35

distribution of all finished memories {Ca1
, · · · , Cac−1

} and the current memory Ci at 36

Si. 37

Theorem 1. Let Pi represent the distribution of all previously learnt data batches drawn

from V at Si . Based on Assumption 1. we derive a GB with probability (at least 1− δ)

at Si :

E
(
h,Pi

)
≤ E

(
h, hCa1,··· ,ac−1

⊗Ci
,PCa1,··· ,ac−1

⊗Ci

)
+

1

2
dH△H(RPi

,RCa1,··· ,ac−1
⊗Ci

)

+ 4

√
2d log(2m′) + log( 2δ )

m′

+ LError(Pi,PCa1,··· ,ac−1
⊗Ci

) , (3)

where LError(Pi,PCa1,··· ,ac−1
⊗Ci

) is the optimal error defined as : 38

LError(Pi,PCa1,··· ,ac−1
⊗Ci

) = min
{
E(h⋆,Pi) + E(h⋆,PCa1,··· ,ac−1

⊗Ci
)
}

(4)
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where h⋆ is the optimal classifier that minimizes the joint risk :39

h⋆ = argmin
h∈H

{
E(h,Pi) + E(h,PCa1,··· ,ac−1

⊗Ci
)
}

(5)

The detailed proof can be found in [2].40

Remark. We have several observations from Theorem 4 :41

• The dH△H distance between Pi and PCa1,··· ,ac−1
⊗Ci

plays an important role for42

the forgetting behaviour of h. As dH△H distance increases in Eq. (3), h would43

suffer from a significant degeneration in performance since RHS of Eq. (3) in-44

creases. PCk1,··· ,kc−1
⊗Ci

represents the information from all learnt memories and45

the current memory, where each memory is learnt by the associated component.46

Therefore, encouraging the knowledge diversity among components can allow47

each PCaj
to capture a different underlying data distribution, resulting in learn-48

ing more underlying data distributions with a suitable number of components.49

In contrast, if several components learn the overlapping knowledge and ignore50

other underlying data distributions, PCk1,··· ,kc−1
⊗Ci would not capture more un-51

derlying data distributions of Pi and thus lead to forgetting during the training.52

• This theorem theoretically proves that the probabilistic diversity between trained53

components in a dynamic expansion model is crucial for relieving forgetting54

using a minimized number of parameters.55

In the following, we provide theoretical analysis to show that the knowledge diver-56

sity among trained components can also improve the generalization performance.57

Theorem 2 For a given data stream V =
⋃n

j=1 Br
j , we assume that V contains t different58

underlying data distributions. Let PV
j represent a certain underlying data distribution.59

Based on Assumption 1, we derive a GB with probability (at least 1− δ) at Si :60

t∑
j=1

{
E
(
h,PV

j

)}
≤ E

(
h, hCa1,··· ,ac−1

⊗Ci
,PCa1,··· ,ac−1

⊗Ci

)

+
1

2
dH△H(RPV

j
,RCa1,··· ,ac−1

⊗Ci
) + 4

√
2d log(2m′) + log( 2δ )

m′

+ LError(PV
j ,PCa1,··· ,ac−1

⊗Ci
) ,

(6)

From Eq. (6), it observes that as the proposed model learns more components over61

time, RHS of Eq. (6) would be reduced since the model gains more knowledge from the62
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data stream. Since the data stream has several different underlying data distributions, 63

encouraging the knowledge diversity among components in the proposed model can 64

help to capture these underlying data distributions with a fair number of parameters. 65

The existing dynamic expansion models [8, 6, 11] fail to achieve the optimal trade-off 66

between the model’s size and generalization performance since they do not take into 67

account the diversity of components when performing the expansion. 68

A.3 The theoretical analysis for the expansion threshold 69

In this section, we provide the theoretical analysis for the expansion threshold (Eq.(1) 70

of the paper). As the expansion threshold β increases, we tend to employ less experts 71

for learning, which can be explained by the following analysis. 72

t∑
j=1

{
E
(
h,PT

t,j

)}
≤

t∑
j=1

{
E
(
h, hCa1,··· ,ac−1

⊗Ci
,PCa1,··· ,ac−1

⊗Ci

)

+
1

2
dH△H(RPT

t,j
,RCa1,··· ,ac−1

⊗Ci
) + 4

√
2d log(2m′) + log( 2δ )

m′

+ LError(PT
t,j ,PCa1,··· ,ac−1

⊗Ci
)
}
,

(7)

We assume that DT
t,j has t number of underlying data distribution and each one is 73

denoted as PT
t,j . A small number of experts would allow PCa1,··· ,ac−1

⊗Ci
to capture 74

fewer knowledge and thus would lose the knowledge corresponding to several target 75

distributions. In contrast, when we decrease the expansion threshold β, PCa1,··· ,ac−1
⊗Ci 76

can capture more knowledge and can reduce the dH△H distance term, leading to a 77

reduction in RHS of Eq. (7). Although, a small expansion threshold β can improve the 78

generalization performance of the proposed model, it also leads to a large number of 79

experts where some of them would capture the same underlying data distribution. An 80

appropriate threshold β can allow the proposed model to employ fewer experts to learn 81

more underlying data distributions, ensuring a good trade-off between the model’s size 82

and generalization performance. 83

B Additional information for the proposed SEDEM 84

In this section, we provide the pseudocode of the proposed SEDEM in Algorithm 1, 85

which can summarized into four steps : 86
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Step 1. Sample selection : We continually add the incoming data batches Br
i to Ci, as87

Ci = Ci−1

⋃
Br
i at Si. If the memory buffer size is larger than λ, we perform the88

sample selection by using Eq.(4) of the paper and then we perform Step 2.89

Step 2. Training SEDEM : We build the first expert Q1 into Q in the beginning of the90

training phase, and train it until Sλ in order to preserve the initial information of a data91

stream. The subsequent learning is described in Fig.2 of the paper, where we suppose92

that we have already trained k experts and added them into Q at Si. We only optimize93

the current expert Qk by using the two loss functions :94

Lcl = − 1

λ

∑λ

j=1

{∑C

t=1

{
ymj (t) log(pkj (t))

}}
(8)

95

LV l = − 1

λ

∑λ

j=1

{
LV AE(zj ;G(ϕk,φk))

}
, (9)

where pkj (t) is the SoftMax probability for the t-th class, predicted by using fωk
◦96

kγk
(xm

j ). zj is the j-th feature vector extracted by using the feature extractor fωk
of97

Qk. Eq. (8) and Eq. (9) are employed to train the classifier fωk
◦ Cγk

(xm
j ) with the98

mask parameters and the expert selector G(ϕk,φk) on Ci at Si. Then we perform Step 3.99

Step 3 . Dynamic expansion : To avoid the frequently checking the model expansion,100

we only evaluate Eq.(1) of the paper if and only if the memory buffer is full |Ci| = λ101

where |Ci| is the number of memorized samples, If Eq.(1) of the paper is satisfied, we102

add a new expert Qk+1 to Q and clear up the memory buffer Ci in order to allow Qk+1103

to learn statistically non-overlapping samples. Then we return back to Step 1.104

Step 4 . Testing phase : Once all {S1, · · · ,Sn} are completed, we perform the expert105

selection by using Eq.(7) of the paper to select an appropriate expert for evaluating a106

given input.107

B.1 Additional information for the difference between SEDEM and108

related works109

In this section, we discuss the difference between the proposed SEDEM and several110

related works. The first work related to this paper is proposed in [11], called On-111

line Cooperative Memorization (OCM), which manages two memory buffers to store112

the short and long-term information from a data stream. OCM can also be combined113

with the dynamic expansion mechanism to further enhance its generalization perfor-114

mance. There are several differences between OCM and SEDEM. First, OCM employs115
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Algorithm 1 Training algorithm for SEMOE
1: (Input:The data stream);
2: for i < n do
3: Br

i ∼ S
4: Ci = Ci−1

⋃
Br
i

5: Sample selection
6: if |Ci| > λ then
7: for c < |Ci| do
8: xm

j ∼ Ci
9: Ls(x

m
j )

∆
= − 1

k−1

∑k−1
h=1

{∑C
t=1

{
ymj (t) log(phj (t))

}}
10: end for
11: Ci = {xm

j | Ls(x
m
j ) < Ls(x

m
j+1), j = 1, · · · , λ}

12: end if
13: Training the SEMOE
14: if |Q| = 1 and i > λ then

Q = Q2

⋃
Q Add the second expert.

15: end if
16: k = |Q|
17: Train the classifier of Qk on Ci using Lcl

18: Train the expert selector of Qk on Ci using LV l

19: Dynamic expansion
20: if |Ci| > λ then
21: if min

{
Lb(Q1,Qk), · · · ,Lb(Qk−1,Qk)

}
≥ β then

22: Q = Qk+1

⋃
Q Add the second expert.

23: end if
24: end if
25: end for
26: Testing phase
27: Perform the expert selection s⋆ = argmaxs=1,··· ,k{LV AE(fωs

(x);G(ϕs,φs))}
28: Perform the evaluation

a dual memory system while SEDEM uses a single memory buffer. Second, OCM pro- 116

poses a kernel-based sample selection approach that transfers necessary samples from 117

short-term to long-term memory. The sample selection in SEDEM is based on the 118

cross-entropy evaluation, which encourages the newly added component to learn novel 119

knowledge. Finally, OCM detects the loss change as the expansion signal, which does 120

not have theoretical guarantees. In contrast, the proposed SEDEM evaluates knowledge 121

diversity among experts as the expansion signal, ensuring a compact model structure 122

and having theoretical guarantees. 123

The second related work is called the Online Discrepancy Distance Learning (ODDL) 124

[12] which introduces to estimate the discrepancy distance between the already learnt 125
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knowledge and incoming samples and uses this result for the model expansion and126

sample selection. There are several differences between ODDL and SEDEM. First,127

the discrepancy-based expansion mechanism in ODDL requires performing the gener-128

ation (sampling) process for each component, leading to more computational costs. In129

contrast, the proposed expansion mechanism (Eq.(1) of the paper) directly estimates130

the knowledge diversity among experts using the memorized samples, as the expan-131

sion signal, which is more efficient than ODDL. Second, as similar to the expansion132

mechanism, the sample selection in ODDL also needs the sampling process for each133

component. In contrast, the proposed SEDEM employs the cross-entropy evaluation134

without the generation process for the sample selection, which is more efficient. Fi-135

nally, ODDL considers learning a VAE model on the image space while the proposed136

SEDEM trains each VAE model to learn the feature representation from each expert.137

Consequently, the proposed SEDEM enjoys faster inference at the testing phase than138

ODDL.139

C Additional information for experiment140

C.1 Additional information for the setting141

Network architecture and hyperparameter : We adapt a small CNN network instead of142

ResNet-18 [4], used as the classifier for Split CIFAR10 and Split CIFAR100 in order143

to reduce the whole model size. We also use an MLP network with 2 hidden layers144

of 200 units [3] as the classifier for Split MNIST. We set the maximum memory size145

λ as 2000, 1000, and 5000 for Split MNIST, Split CIFAR10, and Split CIFAR100,146

respectively.147

GPU hardware. The GPU used for the experiments was GeForce GTX 1080. The op-148

erating system considered for experiments was Ubuntu 18.04.5.149

Split MNIST. We divide MNIST which contains 60k training samples into five tasks,150

each consisting of images from two classes, in consecutive order of their displayed151

digits, while increasing the numbers represented in the images [3].152

Split CIFAR10. We split CIFAR10 into five tasks where each task consists of samples153

from two different classes [3].154

Split CIFAR100. We split CIFAR100 into 20 tasks where each task has 2500 examples155

from five different classes [7].156

We adapt ResNet 18 [4] for Split CIFAR10 and Split CIFAR100. We use an MLP157
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network with 2 hidden layers of 400 units each [3] for Split MNIST. 158

C.2 Additional information for baselines 159

In this section, we introduce several baselines in detail. 160

Finetune is a simple model, implemented by a classifier, which is directly trained on a 161

new batch of images during TFCL. 162

Gradient Episodic Memory (GEM) [7] is a memory-based approach that would use the 163

memory to store past samples. GEM is also required to access both the task label and 164

class label during the training. 165

Incremental Classifier and Representation Learning (iCARL) [9] is a standard memory- 166

based method used in a class incremental setup. 167

reservoir* [10] is a memory-based approach that stores the observed sample into a 168

memory buffer C with probability |C|/n where n is the number of stored samples, and 169

| · | represents the cardinality of a set. 170

Dynamic-OCM [11] is a dynamic expansion model which proposes an online cooper- 171

ative memorization (OCM) approach. OCM manages two memory buffers, aiming to 172

store short- and long-term knowledge during training. In addition, Dynamic-OCM de- 173

tects the change of the loss value as expansion signals, which does not have theoretical 174

guarantees. 175

MIR [7] introduces a retrieval strategy for the sample selection in the memory during 176

the Online Continual Learning (OCL). However, the retrieval strategy in MIR requires 177

evaluating the loss in each training session. This means that MIR requires modifying 178

the retrieval strategy for different tasks such as classification or generation tasks. The 179

proposed OCM does not change the sample selection strategy for different tasks since 180

we evaluate the sample similarity in the given feature space using the kernel function 181

from Eq. (16) from the paper. 182

GSS [1] formulates the sample selection process as a constraint reduction problem. 183

GSS stores samples in a buffer based on the gradient information which requires to 184

access the class labels and can not be applied in the unsupervised learning setting. 185

D Additional results for the ablation study 186

In this section, we provide more ablation studies in order to investigate the effectiveness 187

of each module of the proposed model. 188
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Methods Split MNIST Split CIFAR10 Split CIFAR100

SEDEM-CoPE 97.63 50.82 23.75

SEDEM-MIR 97.65 50.38 23.62

SEDEM-reservoir 97.98 50.35 22.97

SEDEM-NoRS 97.29 50.14 22.85

SEDEM-B1 97.42 52.98 22.74

SEDEM 98.35 55.27 24.85

Table 1: The effectiveness of the proposed sample selection in SEDEM.

0 1000 2000 3000 4000 5000 6000
Training steps

2

4

6

8

10 No of experts
The distribution ID

(a) Split MNIST

0 1000 2000 3000 4000 5000
Training steps

1

2

3

4

5

6

7 No of experts
The distribution ID

(b) Split CIFAR10

Figure 1: The number of experts of SEDEM and the distribution shift during the train-
ing.

D.1 Dynamic expansion189

In this section, we investigate the performance of the proposed model when changing190

the expansion threshold. First, we train the proposed model on Split MNIST and Split191

CIFAR100 with different thresholds and the results are reported in Fig. 2. It observes192

that a small threshold allows SEDEM to use fewer experts, which leads to degenerated193

performance. In contrast, as increase the threshold, SEDEM creates more experts while194

improving performance.195

D.2 Memory buffer size196

In this section, we train various models using different memory configurations. We197

report the performance of various models in Fig. 3. It observes that the dynamic ex-198

pansion model outperforms most static models on all memory configurations. Further-199

more, the proposed approach outperforms other baselines under different memory sizes200
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Methods Split MNIST Split CIFAR10 Split CIFAR100

finetune* 19.75 ± 0.05 18.55 ± 0.34 3.53 ± 0.04

MIR* 93.20 ± 0.36 42.80 ± 2.22 20.00 ± 0.57

GEM* 93.25 ± 0.36 24.13 ± 2.46 11.12 ± 2.48

iCARL* 83.95 ± 0.21 37.32 ± 2.66 10.80 ± 0.37

ER + GMED† 82.67 ± 1.90 34.84 ± 2.20 20.93 ± 1.60

ERa + GMED† 82.21 ± 2.90 47.47 ± 3.20 19.60 ± 1.50

reservoir* 92.16 ± 0.75 42.48 ± 3.04 19.57 ± 1.79

GSS* 92.47 ± 0.92 38.45 ± 1.41 13.10 ± 0.94

CoPE-CE* 91.77 ± 0.87 39.73 ± 2.26 18.33 ± 1.52

CoPE* 93.94 ± 0.20 48.92 ± 1.32 21.62 ± 0.69

CURL* 92.59 ± 0.66 - -

CNDPM 95.36 ± 0.18 48.76 ± 0.28 22.52 ± 1.26

WGF-SVGD - 47.90 ± 2.50 19.90 ± 2.30

Dynamic-OCM 94.02 ± 0.23 49.16 ± 1.52 21.79 ± 0.68

SEDEM-NoRS 97.29 50.14 22.85

Table 2: Classification accuracy, representing the average of five independent runs, for
the continuous learning of three datasets. * and † denote the results cited from [3] and
[5], respectively.

for each dataset. These results show that the proposed model is robust to the memory 201

size change. 202

D.3 Effects of the proposed sample selection 203

We investigate the effectiveness of the proposed sample selection by comparing with 204

SEDEM that adopts other sample selection strategies, including CoPE, MIR and reser- 205

voir, resulting in several baselines such as SEDEM-CoPE, SEDEM-MIR and SEDEM- 206

reservoir. We also create a baseline, SEDEM-NoRS, which does not employ the sam- 207

ple selection. We report the classification accuracy in Tab. 1. It observes that the 208

proposed sample selection approach can allow SEDEM to perform better than other 209

sample selection approaches. This is because the other sample selection approach does 210

not encourage storing novel samples, which would learn the overlapping knowledge. 211
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Methods Split MNIST Split CIFAR10 Split CIFAR100 Split MiniImageNet

Dynamic-OCM 4.2M 68.0M 81.8M 70.0M

CNDPM 4.6M 72.5M 86.6M 78.2M

SEDEM 3.5M 66.8M 79.2M 69.2M

Table 3: The number of parameters of various models under Split MNIST, Split CI-
FAR10 and Split CIFAR100
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Figure 2: The performance of the proposed model when changing the expansion thresh-
old.

D.4 Effects of the proposed DEKMM212

In this section, we evaluate the effectiveness of the proposed DEKMM. We create a213

baseline that does not use DEKMM, called SEDEM-B1. We report the results in Tab. 1.214

The results show that the proposed DEKMM can further improve the performance of215

SEDEM compared with the baseline.216

D.5 The knowledge diversity among experts217

We show the dynamic expansion of SEDEM trained on Split CIFAR10 in Fig. (1). It218

observes that SEDEM can accurately detects the data distribution shift. In addition, a219

single expert almost captures a unique underlying data distribution, demonstrating the220

knowledge diversity among experts in SEDEM.221

In addition, we also record the expansion signals (Left-Hand-Side (LHS) of Eq.(1)222

of the paper) in each training step where we record the zero when SEDEM has only a223

single expert. We train the proposed SEDEM under Split CIFAR10 and plot the results224

in Fig. 4. It observes that the proposed SEDEM gives the low score (LHS of Eq.(1)225

of the paper) when facing the data distribution shift. Such a low score indicates that226

12



100 200 500
Memory buffer size (number of samples)

0

20

40

60

80
Av

er
ag

e 
ac

cu
ra

cy

(a) MNIST

100 200 500
Memory size (number of samples)

0

5

10

15

20

25

30

35

40

Av
er

ag
e 

ac
cu

ra
cy

(b) Split CIFAR10

2000 5000 10000
Memory size (number of samples)

0

5

10

15

20

25

Av
er

ag
e 

ac
cu

ra
cy

(c) Split CIFAR100

5000 10000 20000
Memory size (number of samples)

0

5

10

15

20

25

30

35

Av
er

ag
e 

ac
cu

ra
cy

ER
ER + GMED
MIR
MIR + GMED
CNDPM
The proposed

(d) Split MinImageNet

Figure 3: The performance of various models under different memory configurations.

the SEDEM performs the expansion to adapt to the data distribution shift, ensuring the 227

knowledge diversity among the trained experts. 228

D.6 The effects of batch size 229

In this section, we investigate the performance of the proposed SEDEM when changing 230

the batch size. We train the proposed SEDEM by using the different batch size con- 231

figurations and the results are reported in Fig. 5. These results show that the proposed 232

SEDEM can maintain a stable performance when changing the batch size. 233

D.7 Computational costs 234

In this section, we investigate the computational costs (training times) of various mod- 235

els for the classification task. We report the training times of various models in Tab. 4. 236

It observes that the proposed SEDEM requires fewer training times than Dynamic- 237

13



0 1000 2000 3000 4000 5000
Training steps

0.0

0.2

0.4

0.6

0.8

Figure 4: The expansion criterion of the proposed SEDEM under Split CIFAR10.
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Figure 5: The performance of the proposed SEDEM on Split MNIST when changing
the batch size.

OCM, which is also based on the dynamic expansion mechanism. In addition, SE-238

DEM requires more training times than CNDPM since the proposed sample selec-239

tion in SEDEM requires some computational costs. Furthermore, the SEDEM-NoRS,240

which does not use the sample selection, requires less training times and perform better241

than CNDPM, as shown in Tab. 2 and Tab. 4. These results indicate that the proposed242

SEDEM still outperforms other baselines even if the proposed sample selection is not243

used.244

E The comparison for the model’s complexity245

We report the number of experts of the proposed model and other existing dynamic246

expansion models in Tab. 3. It observes that the proposed model achieves better per-247

formance and employ fewer parameters compared with CNDPM and Dynamic-OCM.248
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Methods Split MNIST Split CIFAR10 Split CIFAR100

Dynamic-OCM 10.2 42.3 47.8

CNDPM 0.9 18.6 30.2

SEMOE 5.6 32.5 38.9

SEDEM-NoRS 0.8 16.9 26.5

Table 4: The training time of various models for the classification task.
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