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A Additional information for the proposed WEVAE

In this section, we provide the pseudocode for the proposed methodology of the Wasser- 1

stein Expansible Variational Autoencoder (WEVAE), which also involves the testing 2

phase, which is provided in Algorithm 1. We summarize the learning procedure of 3

WEVAE into four steps : 4

• Step 1 (Sample selection). At a certain training time Tt, we add a new data batch 5

into the memory buffer, expressed as Mt = Mt

⋃
Xt,Xt ∼ S. We will 6

perform the sample selection using the novelty criterion based on the energy 7

function form Eq. (5) and on a threshold λ, according to Eq. (4) from the paper 8

if the memory buffer Mt is not overloaded |Mt| ≤ |M|max. 9

• Step 2 (Training process). At the time Tt, we train the current component Gk on 10

Mt on a batch of samples, using Eq. (1) of the paper. 11

• Step 3 (Check the model’s expansion). If the proposed WEVAE has only a sin- 12

gle component, we then build the second component when reaching the critical 13

mass of data samples in the buffer Tt = |M|max aiming to preserve the initial 14

knowledge that is used for the expansion process, otherwise, we describe the ex- 15

pansion process as follows : If the memory buffer is full |Mt| = |M|max, we 16

check the model’s expansion using Eq.(4) of the paper to reduce the computa- 17

tional costs. If Eq. (4) of the paper is satisfied, we add new component Gk+1 18

into G. We also clear up the memory buffer in order to allow the newly added 19

component to learn non-overlapping data samples. 20

• Step 4 (Testing phase). We perform the component selection by comparing the 21

sample log-likelihood estimated by each component and then select that compo- 22

nent with the maximum sample log-likelihood for the evaluation. 23

The derivation of Eq.(7) of the paper : 24

The intractable marginal log-likelihood log p(x)=
∫∫

log pθ(x | z,y)p(z,y) dz du 25
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Algorithm 1 Algorithm for WEVAE
1: (Input:The data stream);
2: for Tt < Tn do
3: Sample selection in the memory buffer
4: Xt ∼ S
5: Mt = Mt ∪Xt

6: if |Mt| > |M|max then
7: for t < |Mt| do
8: E(x′

t) =
1

k−1

∑k−1
j=1

{
Re(x′

t, fθj (fωj
(x′

t))
}

9: end for
10: Mt =

⋃|Mt|max

i=1 M′
t[i]

11: end if
12: Training process
13: if k = 1 and Tt = |M|max then
14: Add the second component G2

15: end if
16: Train the current VAE component Gt on Mt using LELBO

17: Check the expansion
18: if |Mi| > |M|max then
19: if E[ws1 , · · · , wst ] > λ then
20: Add a new Component Gk+1

21: end if
22: end if
23: end for
24: Testing phase
25: for i < n′ do
26: x ∼ DT

27: s⋆ = argmaxs=1,··· ,k{LELBO(x;Gs)}
28: Choose Gs⋆ for the evaluation.
29: end for

can have a lower bound according to the Jensen’s inequality :26

log p(x) ≥Eq(z,y|x)

[
log

p(x, z,y)

q(z,y|x)

]
= Eq(z,y|x)

[
log

p(x|z,y)p(z)p(y)
q(z,y|x)

]
=Eq(z|x)q(y|x)

[
log

p(x|z,y)p(z)p(y)
q(z|x)q(y|x)

]
=Eq(z,y|x) [log p(x|z,y)]

+ Eq(z|x)q(y|x)

[
log

p(z)

q(z|x)

]
+ Eq(z|x)q(y|x)

[
log

p(y)

q(y|x)

]
(1)
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where we also consider the independence between the variables y and z. Then accord- 27

ing to the KL divergence form, Eq. (1) can be rewritten as : 28

log p(x) ≥ Eq(z,y|x) [log p(x | z,y)]

−DKL(q(z |x) || p(z))

−DKL(q(y |x) || p(y)) .

(2)

where we omit the subscripts from Eq. (1) of the paper, for the sake of simplification. 29

B The proof of Theorem 1 30

In this section, we provide the detailed proof according to the results from [13]. First, 31

we consider a single component of WEVAE Gi
c, which is trained on Mi at Ti. We have 32

the following equation according to [13] : 33

inf
qω(z)=p(z)

EPx̂i
[LELBO(x; θ, ω)] ≤ −W⋆

L(Px̂i
,Px̃i

c
)− 1

2
log π , (3)

We then add −W⋆
L(PMi ,PGi

c
) in both sides of Eq. (3), resulting in : 34

inf
qω(z)=p(z)

EPx̂i
[LELBO(x; θ, ω)]−W⋆

L(PMi
,PGi

c
) ≤ −W⋆

L(PMi
,PGi

c
)

−W⋆
L(Px,PGi

c
)

− 1

2
log π ,

(4)

where W⋆
L(·, ·) is defined in Eq. (12) from the paper. 35

The first term in the right-hand side (RHS) of Eq. (4) is bounded according to [13] : 36

inf
qω(z)=p(z)

EPMi
Eqω(z |x)[−L(x,Gi

c(z))] ≤ −W⋆
L(PMi ,PGi

c
). (5)

From Eq. (5), we have : 37

inf
qω(z)=p(z)

EPMi
Eqω(z |x)[−L(x,Gi

c(z))]

+
∣∣∣ inf
qω(z)=p(z)

EPMi
Eqω(z |x)[−L(x,Gi

c(z))]−W⋆
L(PMi ,PGi

c
)
∣∣∣ ≥

−W⋆
L(PMi ,PGi

c
),

(6)

We then replace the first term in the RHS of Eq. (4) by the above equation, resulting 38
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in :39

inf
qω(z)=p(z)

EPx̂i
[LELBO(x; θ, ω)]−W⋆

L(PMi ,PGi
c
)

≤ inf
qω(z)=p(z)

EPMi
Eqω(z |x)[−L(x,Gi

c(z))]−W⋆
L(Px,PGi

c
)

+
∣∣∣ inf
qω(z)=p(z)

EPMi
Eqω(z |x)[−L(x,Gi

c(z))]−W⋆
L(PMi

,PGi
c
)
∣∣∣

− 1

2
log π ,

(7)

We then add the negative KL divergence term in both sides of Eq. (7) :40

inf
qω(z)=p(z)

EPx̂i
[LELBO(x; θ, ω)]−W⋆

L(PMi
,PGi

c
)

− inf
qω(z)=p(z)

EPMi
[DKL(qω(z |x) || p(z))] ≤

inf
qω(z)=p(z)

EPMi
Eqω(z |x)[−L(x,Gi

c(z))]− inf
qω(z)=p(z)

EPMi
[DKL(qω(z |x) || p(z))]−

1

2
log π︸ ︷︷ ︸

ELBO

−W⋆
L(Px,PGi

c
) +

∣∣∣ inf
qω(z)=p(z)

EPMi
Eqω(z |x)[−L(x,Gi

c(z))]−W⋆
L(PMi ,PGi

c
)
∣∣∣ ,

(8)

According to the definition of ELBO, Eq. (8) can be rewritten as :41

inf
qω(z)=p(z)

EPx̂i
[LELBO(x; θ, ω)]

−W⋆
L(PMi

,PGi
c
)− inf

qω(z)=p(z)
EPMi

[DKL(qω(z |x) || p(z))] ≤

inf
qω(z)=p(z)

EPMi
[LELBO(x; θ, ω)]−W⋆

L(Px,PGi
)

+
∣∣∣ inf
qω(z)=p(z)

EPMi
Eqω(z |x)[−L(x,Gi

c(z))]−W⋆
L(PMi ,PGi

c
)
∣∣∣ ,

(9)

Then we rewrite Eq. (9), resulting in :42

inf
qω(z)=p(z)

EPx̂i
[LELBO(x; θ, ω)] ≤ inf

qω(z)=p(z)
EPMi

[LELBO(x; θ, ω)] +W⋆
L(PMi

,PGi
c
)

−W⋆
L(Px,PGi

c
)

+ inf
qω(z)=p(z)

EPMi
[DKL(qω(z |x) || p(z))]

+
∣∣∣ inf
qω(z)=p(z)

EPMi
Eqω(z |x)[−L(x,Gi

c(z))]

−W⋆
L(PMi

,PGi
c
)
∣∣∣ ,

(10)
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We consider that L(·) satisfies triangle inequality, we have : 43

W⋆
L(PMi ,PGi

c
) +W⋆

L(Px,PGi
c
) ≥ W⋆

L(Px̂i
,PMi) (11)

We move the second term in the left-hand side of Eq. (11) in the right-hand side : 44

W⋆
L(Px̂i

,PGi
c
) ≥ W⋆

L(Px̂i
,PMi

)−W⋆
L(PMi

,PGi
c
) (12)

Then we replace W⋆
L(Px̂i

,PGi
c
) from Eq. (10) by the expression of Eq. (12), result- 45

ing in : 46

inf
qω(z)=p(z)

EPx̂i
[LELBO(x; θ, ω)] ≤ inf

qω(z)=p(z)
EPMi

[LELBO(x; θ, ω)]

+ 2W⋆
L(PMi

,PGi
c
)

−W⋆
L(Px̂i

,PMi
) + F̃(PGi

c
,PMi

) ,

(13)

where F̃(PGi
c
,PMi) is expressed as : 47

F̃(PGi
c
,PMi

) = inf
qω(z)=p(z)

EPMi
[DKL(qω(z |x) || p(z))]

+
∣∣∣ inf
qω(z)=p(z)

EPMi
Eqω(z |x)[−L(x,Gi

c(z))]−W⋆
L(PMi ,PGi

c
)
∣∣∣ (14)

For the sake of simplification we omit inf in Eq. (13), resulting in : 48

EPx̂i
[LELBO(x; θ, ω)] ≤ EPMi

[LELBO(x; θ, ω)]

+ 2W⋆
L(PMi

,PGi
c
)

−W⋆
L(Px̂i

,PMi
) + F̃(PGi

c
,PMi

) ,

(15)

This results in the derivation of a bound for a single component Qi
c. We can easily 49

extend Eq. (15) for a WEVAE mixture model G = {G1, · · · ,Gk}, resulting in : 50∑ai

j=1

∑cj

t=1

{{
F̃s(G,Pxj

i (t)
)
}}

≤∑ai

j=1

∑cj

t=1

{{
Fs(G,Pxj

i (t)
)
}}

□

(16)

which corresponds to Eq. (9) from the paper. 51
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C The proof of Theorem 252

Let us consider a WEVAE model G with k components, we can view G as a single53

model trained on all memories {Mb1 , · · · ,Mbk}, based on the component selection54

(Eq.(10) of the paper). Let Px̃i be the distribution of samples equaly drawn from each55

component {Gj , j = 1, · · · , |G|} at Ti. Let PMb1:bk
be the distribution of all memories56

{Mb1 , · · · ,Mbk}. Based on Eq. (15), we have :57

EPx̂i
[LELBO(x;G)] ≤ EPMb1:bk

[LELBO(x;G)]

+ 2W⋆
L(PMb1:bk

,Px̃i)−W⋆
L(Px̂i

,PMb1:bk
)

+ F̃(Px̃i ,PMb1:bk
) ,

(17)

□58

In the following, we compare the proposed WEVAE model with the static model59

under the theoretical framework defined in the paper. We start with providing the60

definition of the static model.61

Definition 4. Let Gi be a single/static model which is trained on Mi at Ti. Let PGi be62

the distribution of samples drawn from the generation process of Gi at Ti.63

Lemma 1. Based on Definition 4., we can derive a bound for a single/static model at64

Ti :65

EPx̂i
[LELBO(x;Gi)] ≤ EPMi

[LELBO(x;Gi)]

+ 2W⋆
L(PMi ,PGi)−W⋆

L(Px̂i
,PMi)

+ F̃(PGi ,PMi
) ,

(18)

Eq. (18) when compared to Eq. (17), has smaller upper bound since the term66

W⋆
L(Px̂i

,PMb1:bk
) in the RHS of Eq. (17) can be reduced significantly when training67

more components. This shows that the proposed WEVAE naturally performs better68

than the single/static model.69

D Analysis for selecting λ70

In this section, we theoretically analyze the role of the threshold λ used for model ex-71

pansion in Eq. (4) and the model’s generalization performance. According to Theorem72
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2, we have : 73

EPx̂i
[LELBO(x;G)] ≤ EPMb1:bk

[LELBO(x;G)]

+ 2W⋆
L(PMb1:bk

,Px̃i)−W⋆
L(Px̂i

,PMb1:bk
)

+ F̃(Px̃i ,PMb1:bk
) .

(19)

A large threshold λ encourages the model to frequently build new components, re- 74

sulting in a model with many components (k in Eq. (19) is large). Then the distribution 75

PMb1:bk
would preserve more knowledge from the data stream and can thus reduce 76

the term 2W⋆
L(PMb1:bk

,Px̃i) in Eq. (19), leading to better performance. In contrast, 77

if we consider a small λ, this would prevent WEVAE model’s expansion, leading to 78

fewer components. Therefore, the distribution PMb1:bk
would miss some underlying 79

data distributions from the data stream and the term 2W⋆
L(PMb1:bk

,Px̃i) is increased 80

in Eq. (19), leading to worse performance. The optimal threshold λ should ensure a 81

good trade-off between the model size and its resulting generalization performance. 82

Optimally, this would be implemented by ensuring that each individual WEVAE com- 83

ponent models a unique data distribution. In this way we would minimize the overlap 84

between the statistical representations by two different components and WEVAE would 85

represent a diversity of distributions while using an optimal number of parameters. 86

E Additional information for the experiment setting 87

The release of the code. We have provided the detailed implementation of the pro- 88

posed Wasserstein Expansible Variational Autoencoder (WEVAE) model. We also 89

provide the source code in the supplemental material. In addition, We will provide 90

after properly organizing the source code used in the experiments and for the testing 91

of the WEVAE model for the sake of easy understanding and for facilitating the re- 92

implementation and we will release it publicly on https://github.com/, if the paper is 93

accepted. 94

E.1 Experiment setting 95

The hyperparameter configuration and GPU hardware. For all experiments, we use 96

Adam [6] with a learning rate of 0.0001 and its default hyperparameters. For the den- 97

sity estimation task, we employ the batch size of 64 and one training epoch for training. 98

All experiments are performed on the server with the operating system Ubuntu 18.04.5. 99

We also use the GPU (NVIDIA A40) for all our experiments. 100
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The configuration of the network architecture for density estimation task. Following from101

[3], we use two fully connected layers for implementing the generator and inference102

models. Each layer in the neural network has 200 hidden units. The maximum mem-103

ory size for Split MNIST, Split Fashion, Split MNIST-Fashion, Cross-domain is 1.5K,104

1.5K, 1.9K and 2.0K, respectively.105

Additional information for the evaluation. All results reported in the paper are evalu-106

ated on the testing datasets after the task-free continual learning.107

E.2 The configuration for the classification task.108

In this section, we provide the detailed information for the classification task. First, we109

employ several datasets inlcuding Split MNIST, Split CIFAR10, Split CIFAR100 and110

Split MiniImageNet, which are introduced in the following.111

Split MNIST. We divide MNIST which contains 60k training samples into five tasks,112

each consisting of images from two classes, in consecutive order of their displayed113

digits, while increasing the numbers represented in the images [4].114

Split CIFAR10. We split CIFAR10 into five tasks where each task consists of samples115

from two different classes [4].116

Split CIFAR100. We split CIFAR100 into 20 tasks where each task has 2500 examples117

from five different classes [8].118

Split MiniImageNet. We divide the MiniImageNet into 20 tasks [10], where each task119

collects the images of five classes [2].120

In the following, we describe the detailed information of the network architecture121

used in our classification task.122

We adapt ResNet 18 [5] for Split CIFAR10 and Split CIFAR100. We use an MLP123

network with 2 hidden layers of 400 units each [4] for Split MNIST. The maximimum124

memory size for Split MNIST, Split CIFAR10, Split CIFAR100 are 2000, 1000 and125

5000, respectively. At the testing phase, we make the component selection by compar-126

ing the sample log-likelihood and the classifier of the selected component is used for127

prediction.128

We introduce additional information for several baselines, used in the experimental129

results from the Tables 1-4 from the paper, in the following.130

Finetune trains a single model directly on a new batch of images during the online131

continual learning.132

Gradient Episodic Memory (GEM) [8] is a memory-based approach that would use the133
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memory to store past samples. GEM is also required to access both the task label and 134

class label during the training. 135

Dynamic-OCM [13] is a dynamic expansion model which proposes an online cooper- 136

ative memorization (OCM) approach. OCM manages two memory buffers, aiming to 137

store short- and long-term knowledge during training. In addition, Dynamic-OCM de- 138

tects the change of the loss value as expansion signals, which does not have theoretical 139

guarantees. 140

Incremental Classifier and Representation Learning (iCARL) [9] is a standard memory- 141

based method used in a class incremental setup. 142

reservoir* [11] is a memory-based approach that stores the observed samples into a 143

memory buffer M with probability |M|/n where n is the number of stored samples, 144

and | · | represents the cardinality of a set. 145

MIR [2] introduces a retrieval strategy for the sample selection in the memory during 146

the Online Continual Learning (OCL). However, the retrieval strategy in MIR requires 147

evaluating the loss in each training session. This means that MIR requires modifying 148

the retrieval strategy for different tasks such as classification or generation tasks. 149

GSS [1] formulates the sample selection process as a constraint reduction problem. 150

GSS stores samples in a buffer using the gradient information which requires to access 151

the class labels and can not be applied in the unsupervised learning setting. 152

E.3 The configuration for the density estimation task 153

Following from [13], we compare our model (WEVAE) with existing TFCL methods 154

in the density estimation task, which are outlined as : (1) VAE-ELBO-OCM : A sin- 155

gle VAE model with ELBO using the Online Cooperative Memorization (OCM) [13]. 156

(2) VAE-IWVAE50-OCM : A single VAE model with IWVAE using the OCM where 157

the number of importance samples is 50. (3) VAE-ELBO-Random : A single VAE 158

model with a memory that randomly removes samples when it reaches the maximum 159

memory size. (4) Dynamic-ELBO-OCM : A mixture model with ELBO using OCM 160

[13]. (5) CNDPM [7]; (6) LIMix [12] : We assign an episodic memory with a fixed 161

buffer size for the LIMix model used for TFCL. The maximum number of components 162

for various models is set to 30 to avoid memory overload. For the classification task, 163

we adopt the baselines from the recently adopted TFCL benchmark from [4]. 164
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Figure 1: The performance of various models on four datasets when changing the
memory size.

F Additional results for ablation study165

In this section, we provide additional results for the ablation study, which investigate166

the effectiveness of each module of the proposed WEVAE.167

F.1 Changing the memory size168

We evaluate the performance of various models by changing the memory size, and the169

results are provided in Fig. 1. As the memory buffer increases its capacity, all models170

improve their performance. The proposed WEVAE outperforms other models on all171

memory configurations, even if the memory buffer can only store 500 samples. In172

addition, the proposed WEVAE outperforms other baselines by a large margin when173

having enough memorized samples.174
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Figure 2: The performance and the number of components of WEVAE when changing
the expansion threshold λ in the density estimation task on Split MNIST.

F.2 Changing the threshold λ 175

We investigate the performance and the number of components of WEVAE on Split 176

MNIST when changing the threshold λ and the results are shown in Fig. 2. Decreasing 177

λ can increase the number of components but does not lead to a significant improve- 178

ment in the performance. These results show that the proposed WEVAE can achieve 179

good performance using only three components, demonstrating that each component 180

in WEVAE can capture different knowledge well. 181

F.3 Changing the batch size 182

We also investigate the performance and the number of components of WEVAE when 183

changing the batch size, and the results are shown in Fig. 3 on Split MNIST dataset. We 184

can observe that the proposed WEVAE does not suffer from a degenerated performance 185

and maintains a similar number of components when changing the batch size. 186

F.4 Model expansion process 187

We investigate the number of components of WEVAE and the change of the distribution 188

(task) on Split MNIST in the classification task, and the results are reported in Fig. 4. 189

The proposed WEVAE frequently creates components at the initial learning stage in- 190

stead of the later learning stages. The reason is that when WEVAE has accumulated 191

more knowledge, it does not need more components to learn the related information 192
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Figure 3: The performance and the number of components of WEVAE when changing
the batch size on Split MNIST.

in the later learning process. In addition, a small threshold λ encourages WEVAE to193

build more components. A suitable threshold λ such as 60 enables the WEVAE to194

employ a reasonable number of components where each component captures a unique195

underlying data distribution.196

F.5 Fuzzy task setting197

In a realistic continual learning setting, a model usually accesses samples drawn from a198

data stream with fuzzy task boundaries [7]. In this section, we evaluate the performance199

of various models on the fuzzy task setting. We employ the same procedure as in [7],200

which swaps randomly chosen samples between two tasks from each data stream. The201

results are reported in Tab. 1, which show that the proposed WEVAE outperforms other202

baselines on the fuzzy task setting.203

F.6 Comparison with another sample selection approach204

We create two baselines WEVAE-GSS and WEVAE reservoir, which employ GSS and205

Reservoir, respectively, for sample selection. The results for the classification task206

are provided in Tab. 2. These results demonstrate that the proposed sample selection207

approach outperforms using the Reservoir’s sample selection approach in all datasets208

considered.209
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Figure 4: The number of components of WEVAE and the change of the distribution on
Split MNIST in the classification task.

F.7 Computational complexity analysis 210

We investigate the computational costs of the proposed WEVAE in the classification 211

task, and the results are provided in Tab. 3. We find that the proposed WEVAE requires 212

more training time than CNDPM. This is because the proposed dynamic expansion 213

mechanism uses the generative replay process, leading to additional computational 214

costs. However, the proposed WEVAE outperforms CNDPM by a large margin on 215

various tasks while requirying similar computational times compared with CNDPM. 216

Furthermore, to compare with Dynamic-OCM, the proposed WEVAE is more efficient 217

since Dynamic-OCM requires performing the sample selection for the memory buffer. 218

As a result, the proposed WEVAE outperforms Dynamic-OCM on both the density 219

estimation and classification tasks. 220
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Methods Split MNIST Split CIFAR10 Split MImageNet

Vanilla 21.53 ± 0.1 20.69 ± 2.4 3.05 ± 0.6

ER 79.74 ± 4.0 37.15 ± 1.6 26.47 ± 2.3

MIR 84.80 ± 1.9 38.70 ± 1.7 25.83 ± 1.5

ER + GMED 82.73 ± 2.6 40.57 ± 1.7 28.20 ± 0.6

MIR+GMED 86.17 ± 1.7 41.22 ± 1.1 26.86 ± 0.7

WEVAE 88.78 ± 1.2 45.26 ± 1.8 30.12 ± 1.2

WEVAE-NoS 87.65 ± 1.3 44.97 ± 1.3 29.57 ± 0.9

Table 1: The classification accuracy of five independent runs for various models over
data streams with fuzzy task boundaries.

Methods Split MNIST Split CIFAR10 Split CIFAR100

WEVAE-GSS 94.32 51.98 22.62

WEVAE-reservoir 94.12 51.02 22.18

WEVAE 96.63 54.98 25.03

Table 2: The classification accuracy of various models on three datasets, respectively.

F.8 The knowledge diversity among WEVAE’s components221

We investigate whether the proposed WEVAE can train its mixture components to learn222

diverse information during the training. We train WEVAE on Split MNIST in the clas-223

sification task. After training, the proposed WEVAE builds seven components and we224

show the results for the data generated by each component in Fig. 5. We can observe225

that each component generates images belonging to a different underlying data distri-226

bution, demonstrating that the proposed WEVAE can train its components, each being227

characterized by a different probabilistic representtaion, which is consistent with our228

theoretical analysis from Theorem 2 of the paper.229

F.9 Comparison to the task-aware baselines230

In this section, we compare the proposed WEVAE with the task-aware approaches on231

a long sequence of tasks. According to the setting from [12], we consider a sequence232
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Methods Split MNIST Split CIFAR10 Split CIFAR100

WEVAE 1.3 20.02 33.52

CNDPM 0.9 18.6 30.23

Dynamic-OCM 10.2 42.3 47.8

Table 3: The training time (minutes) of various models.

(a) Generations of com-
ponent 1.

(b) Generations of com-
ponent 2.

(c) Generations of com-
ponent 3.

(d) Generations of com-
ponent 4.

(e) Generations of com-
ponent 5.

(f) Generations of com-
ponent 6.

(g) Generations of com-
ponent 7.

Figure 5: The generation of each expert in DSVitE on Split MNIST

of several databases, including MNIST, Fashion, SVHN, Inverse Fashion (IFashion), 233

Rotate MNIST (RMNIST), resulting in the sequence MSFIR. We assign a memory 234

buffer that can store maximum 5000 samples for the proposed WEVAE. The batch size 235

is 64 and the results are reported in Tab. 4 where the results of all comparison baselines 236

are taken from [12]. These results show that the proposed WEVAE still performs other 237

methods even if the task information is not provided. 238

F.10 Analysis for the model complexity 239

In this section, we analyze the model complexity of various models under the density 240

estimation task. The number of parameters of various models are reported in Tab. 5. 241
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MSE

Datasets LGM CURL BE GMM Stud WEVAE

MNIST 129.93 211.21 19.24 26.64 176.82 67.41

Fashion 89.28 110.60 38.81 33.67 178.04 92.56

SVHN 169.55 102.06 39.57 30.27 146.70 114.63

IFashion 432.90 115.29 36.52 35.03 158.18 59.09

RMNIST 130.28 279.47 25.41 22.97 157.55 68.68

Average 190.38 163.72 31.91 29.71 163.45 80.47

Table 4: The performance of various models after MSFIR lifelong learning.

Methods Split MNIST Split Fashion Split MNIST-Fashion Cross domain

WEVAE 6M 20M 16M 18M

WEVAE-NoS 10M 20M 16M 18M

LIMix 60M 60M 60M 60M

CNDPM 60M 60M 60M 60M

Dynamic-ELBO-OCM 10M 20M 20M 22M

Table 5: The number of parameters of various models under the density estimation
task. ‘M’ represents millions of parameters. WEVAE-NoS, represents the situation
where we do not consider the sample selection mechanism, as described in Section 4.2
in the paper.

These results show that the proposed WEVAE employs equal or fewer parameters while242

achieving better performance than other dynamic expansion models.243

F.11 The effect when not considering the stochastic process244

In this section, we investigate the effect of the proposed WEVAE without using the245

stochastic process. Eq.(3) of the paper can be rewritten as the expansion criterion :246

min
{
(Ld(Pθ

t1
1
,Pθt

k
), · · · ,Ld(Pθ

tk−1
k−1

,Pθt
k
)
}
≥ λ , (20)

We call WEVAE using Eq. (20) as WEVAE-1. We train both WEVAE and WEVAE-247

1 using the same hyperparameter configuration on Split MNIST, Split CIFAR10 and248
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Methods Split MNIST N Split CIFAR10 N Split CIFAR100 N

WEVAE 96.87 5 55.26 6 25.12 5

WEVAE-1 95.75 7 54.12 8 24.74 6

Table 6: Classification accuracy of various models on three datasets.

Split CIFAR100. The classification results are reported in Tab. 6, which show that 249

WEVAE outperforms WEVAE-1 while employing fewer components. These results 250

demonstrate that the stochastic process can further improve the performance and reduce 251

the number of parameters for WEVAE. 252
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