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1. Additional Dataset Details

We provide the counts of number of samples in train, val
and test splits for our evaluation settings in Table 1. While
we use standard splits for CelebA and Waterbirds proposed
in prior bias mitigation work [1], we propose our own splits
for NICO++, which we now describe in more detail.
NICO++ splits. To have a sufficient number of samples
per-group, we first group concepts (eg. cats, dogs, trains,
bikes) to form six super-concepts: mammals, birds, plants,
waterways, landways and airways, each occurring in six
contexts, giving us a total of 6 × 6 = 36 groups. We
then create settings where each context is spuriously corre-
lated with a unique super-concept (e.g. rocks (context) and
mammals (super-class)). This results in 6 bias-aligned and
30 bias-conflicting slices. Table 2 describes the dominant
contexts for each super-class, alongwith the base NICO++
classes included in the super-class.

To generate splits, we first randomly select 50 images
per each (super-concept, context) pair for creating our eval-
uation test split. For each of NICO++95, NICO++90and
NICO++75, we then create a trainval (train + val) split.

Setting train val test

Waterbirds 4795 1199 5794
CelebA 162770 19867 19962

NICO++75 9349 2349 1800
NICO++90 8209 2074 1800
NICO++95 7839 1979 1800

Table 1: Number of samples in train, val and test splits of
our evaluation settings.

To create bias-aligned slices from the trainval split, we
first select a super concept and its corresponding dominant
concept (e.g. mammals and rocks) and retrieve all images
annotated with both. Next, we select the required number
of bias-conflicting samples (where the super concepts occur
in non-dominant contexts) such that a desired correlation
strength of β ∈ {75, 90, 95} is ensured for each NICO++β

setting. Finally, we divide the train-val split uniformly at
random in an 80-20 ratio to form the train and val splits
respectively. Table 3 shows the resulting train distribution
of classes and contexts for NICO++90.

2. FACTS: Additional analysis

2.1. GradCAM visualizations

We generate GradCAM visualizations [2] to investigate
the region of interest of the standard ERM model hs and
the bias-amplified model hAmCo across the bias-conflicting
samples. Figure 1 displays some of the samples belonging
to the bias-conflicting slices which were correctly classified
using the ERM model. We observe that hs focuses on fea-
tures associated with the target label, whereas hAmCo focuses
on features associated with the spurious attribute. We also
observe that hAmCo mispredicts the samples as the class that
is correlated with the spurious attribute.



Super-concept NICO++ concepts Dominant
context

mammals sheep, wolf, lion, fox, elephant, kangaroo, cat, rabbit, dog, monkey,
squirrel, tiger, giraffe, horse, bear, cow

rock

birds bird, owl, goose, ostrich grass
plants flower, sunflower, cactus dim lighting
landways bicycle, motorcycle, train, bus, scooter, truck, car autumn
waterways sailboat, ship, lifeboat water
airways hot air balloon, airplane, helicopter outdoor

Table 2: NICO++ split details. We list super-concepts that we use as target labels and their corresponding base concepts
from the original NICO++ dataset. Each super-concept co-occurs with six different contexts. In our proposed train and
validation splits, each context dominantly co-occurs with a unique super-concept (e.g. rocks and mammals) .

Contexts
Classes

mammals birds plants airways waterways landways

rock 2552 50 50 50 50 50
grass 24 1280 24 24 24 24

dim lighting 12 12 616 12 12 12
outdoor 16 16 16 879 16 16
water 20 20 20 20 1063 20

autumn 21 21 21 21 21 1104

Table 3: NICO++ split distribution. Distribution of samples for each (super-concept, context) pair in the train split of
NICO++90.
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Figure 1: GradCAM [2] visualizations of bias-conflicting samples which were correctly classified by the ERM model. We
see that the bias-amplified model hAmCo makes predictions focusing on the features associated with the spurious attribute,
whereas the standard ERM model is able to learn some of the features associated with the target label.

2.2. CoSi Sensitivity to hyperparameters

For the NICO++95 setting, we find α = 0.25, Σp
∼= full

and δp = 10−3 to result in the best Silhouette coeffi-



cient [3]. In Table 4, we vary the different hyperparame-
ters used in the second stage of our approach. First, we
vary the value of α - the weight assigned to the correla-
tion prior in the log-likelihood (Section 3.2). Next, we
change the covariance type of Σp, the covariance of the
mutivariate normal distribution used to model the correla-
tion prior. We find that restricting covariance to diagonal
drops the Precision@10 to 0.53 from 0.62, while re-
stricting all mixture components to have a tied covariance
matrix drops the Precision@10 to 0.58. Finally, fitting
the mixture model using the logits from our bias-amplified
ERM model hAmCo to a standard ERM model drops the
Precision@10 to 0.36.

Ablation Precision@10

α = 25, Σp
∼= full, δp = 10−3 (ours) 0.62

α = 10 0.57
α = 50 0.53

Σp
∼= diagonal 0.53

Σp
∼= tied 0.58

δp = 10−5 0.57
δp = 10−4 0.62
δp = 10−2 0.49

Using standard ERM 0.36

Table 4: Ablating CoSi hyperparameters. Results on
NICO++95.

2.3. CoSi hyperparameter tuning and validation

In Figure 2, we show how the use of Silhouette coeffi-
cient [3] results in selection of hyperparameters achieving
good Precision@10 in the NICO++95 setting. The Sil-
houette coefficient measures how well separated different
clusters are in the embedding space. We compute the mean
of Silhouette coefficients obtained in the embedding spaces
of CLIP [4] and model predictions.

2.4. Decaying weight decay schedule

Our current method requires training multiple models
with different weight decays for finding the right capacity
of model needed. Here, we explore varying the weight de-
cay in a single training run and then picking the model that
achieves highest average variation in per-class confidences.
Specifically, we decay the weight decay exponentially from
2.0 to 10−3 over the course of training. While this simple
strategy results in training of far lesser models, we find that
this doesn’t result in consistent gains in the more difficult
NICO++ settings.

10 25 50
Tradeoff parameter ( )

0.
1

0.
00

1
1e

-0
5No

n-
ne

ga
tiv

e 
re

g.
 (

p)

-0.015 0.12 0.16

0.2 0.23 0.21

0.14 0.15 0.15
0.4

0.6

Pr
ec

isi
on

@
10

Figure 2: Validation of CoSi hyperparameter selection
strategy. We plot the Precision@10 (color, darker is
higher) as the hyperparameters in CoSi (δp and α) vary
along with the values of Silhouette coefficients (inscribed
values). We select δp = 0.001 and α = 25 that result in the
highest value of Silhouette coefficient.

Identification Waterbirds CelebA NICO++90 NICO++95

AmCo 0.58 0.29 0.41 0.31
wd schedule 0.63 0.31 0.35 0.30

Table 5: Comparison of methods in terms of Avg-AP for
retrieving bias-conflicting samples across evaluation set-
tings.

2.5. Additional qualitative examples

In Figs. 3-12 we present additional qualitative examples
of slices discovered by FACTS on the CelebA, Waterbirds,
and NICO++ settings. We present the top-6 slices after
ranking the slices based on model’s performance on the
slice. We report model’s accuracy on each slice at the top.

3. FACTS: Additional comparison to prior
work

3.1. Domino

• Our method makes use of a bias-amplified ERM model
hAmCo instead of the standard ERM model hb. This
helps increase the separation between the bias-aligned
and bias-conflicting samples belonging to a particular
class (validated in Section 4.5).

• Our method makes use of richer prior in the form of
logits hAmCo(X) produced by the bias-amplified model
instead of the categorical assignment of the predicted
class label Ŷ = argmax(hb(X)) using a standard
ERM model.



Figure 3: Top-6 slices retrieved by FACTS for the landbirds class from Waterbirds. All these slices predominantly contain
the bias-conflicting slices: landbirds in water backgrounds.

• Lastly, [5] clusters samples across all classes together
and separates them by enforcing a soft constraint on
the class membership. It does this by jointly mod-
elling its mixture model with class information using
the term P (Ŷ = hs(xi)|S(j) = 1). We found enforc-
ing a hard constraint helps prevent any inter-class con-
tamination of slices.

We summarize the differences with Domino [5] in Ta-
ble 6.

3.2. JTT and GroupDRO

Prior mitigation works [6, 1] use high regularization
and low learning rates to achieve good worst group perfor-
mance. Also, [6] observes high weight decay to increase
the accuracy gap between bias-aligned and bias-conflicting



Figure 4: Slices retrieved by FACTS for the waterbirds class from Waterbirds. The samples in these discovered slices are
predominantly belong to the bias-conflicting slice of waterbirds in land backgrounds.

Criterion FACTS DOMINO

Amplification High l2 reg. Standard l2 reg.
Prior Bias amplified logits Cat. assignment of pred. label

Clustering Per-class, hard assignment Global, soft assignment

Table 6: Comparing FACTS to DOMINO.

groups. In this work, we exploit this observation for better
separating bias-aligned and bias-conflicting groups for the
purpose of identifying spurious correlations.



Figure 5: Slices retrieved by FACTS for the non-blonde (dark-haired or gray-haired) class of celebrity faces from CelebA.
Note that although this class doesn’t have a bias-conflicting slice, FACTS is able to recover coherent slices with degraded
performance.

4. FACTS: Additional details

4.1. Implementation Details for CoSi

In the second stage of our approach, we first initialize
the slices using the model’s confusion matrix over valida-
tion data following [5], wherein samples with identical pre-

dictions are assigned to the same slices. We fit 36 mix-
ture components per-class. Once the mixture model is fit,
we assign each sample to the slice under which the sample
achieves the highest density, and rank samples within a slice
in order of this density. Finally, we rank slices using model
performance and report top-6 slices.

For generating captions and keywords for slices (in Fig.



Figure 6: Slices retrieved by FACTS for the blonde class from CelebA. Here, FACTS recovers multiple slices (Slice #1, #3,
#4) corresponding to the bias-conflicting slice: blonde males.

5) we closely follow [7]. Specifically, we use an off-the-
shelf captioning model, ClipCap [8] for naming all images
in a slice. To each slice, we assign a keyword that repeats
the most number of times within the captions of the slice.
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Figure 7: Slices retrieved by FACTS for the mammals class from NICO++90. Note that the dominant context for mammals
is rocks.
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Figure 8: Slices retrieved by FACTS for the birds class from NICO++90. Note that the dominant context for birds is grass.
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Figure 9: Slices retrieved by FACTS for the plants class from NICO++90. Note that the dominant context for plants is dim
lighting.



Figure 10: Slices retrieved by FACTS for the airways class from NICO++90. Note that the dominant context for airways is
outdoor.



Figure 11: Slices retrieved by FACTS for the waterways class from NICO++90. Note that the dominant context for water-
ways is water.



Figure 12: Slices retrieved by FACTS for the landways class from NICO++90. Note that the dominant context for landways
is autumn.


