
Appendices
A. Implementation details
A.1. Tangent-space optimization

Due to manifold constraints, rotations cannot be naively optimized using standard first-order optimizers. In TILTED, we
address this via a Riemannian ADAM [17] approach. Each τt is stored as a unit-complex vector (∈ S1) for 2D experiments
and as a unit quaternion (∈ S3) for 3D experiments, but gradients are computed with respect to tangent spaces corresponding
to the standard so(2) and so(3) Lie algebras. ADAM [13] is applied to scale tangent-space gradients ξkt at each training step
k, and an exponential map is used in place of addition to apply updates:

τt,k+1 = τ t,kExp(αkξt,k)

where αk is the learning rate for τ at step k. For experiments with real world data, we refine camera poses using this same
mechanism.

A.2. Handling boundaries

One benefit of axis-aligned latent decompositions is that they make bounding boxes intuitive: all coordinates used for
interpolation can be constrained to lie within a well-defined input domain. When we apply geometric transformations to
the domain of factors, however, the regions of the input space that each factor covers stop fully overlapping. To resolve this
for bounded scenes, we apply simple coordinate clipping. Toroidal boundary conditions, similar to what is used in Factor
Fields [34], can also be used. For unbounded scenes, we adopt an `∞ norm-based scene contraction function [24, 36]:

contract(p) =

{
p ||p||∞ ≤ 1

(2− 1
||p||∞ )( p

||p||∞ ) ||p||∞ > 1
(A.1)

When applied after τ , note that scene contraction places all points in the range [−2, 2], which mitigates boundary concerns
entirely.

A.3. Regularization

We adopt two standard regularization terms: spatial total variation (TV) on feature grids and the distortion loss proposed
by MipNeRF 360 [24]. NeRF experiments additionaly rely on a pair of proposal fields, which require an additional interlevel
loss [24]. A weight of 0.01 is used for total variation, a weight of 0.001 for the distortion loss, and a weight of 1.0 for the
interlevel loss. More details can be found in our code release.

B. Disaggregated SDF results
B.1. SDF results, with random scene rotation

In this section, we report disaggregated results from our SDF reconstruction experiments, with and without TILTED. We
apply a random global rotation for each seed in these results.

Methods Avg BunnySO(3) LucySO(3) ChairSO(3) ArmadilloSO(3) DragonSO(3) CheburashkaSO(3) BeastSO(3) HappySO(3)

IoU↑
K-Planes-30 0.949 0.969 0.933 0.937 0.952 0.935 0.980 0.922 0.967
w/ TILTED 0.989 0.996 0.987 0.987 0.993 0.977 0.995 0.988 0.990

K-Planes-60 0.949 0.982 0.939 0.922 0.955 0.922 0.979 0.918 0.978
w/ TILTED 0.990 0.996 0.982 0.993 0.989 0.983 0.997 0.984 0.993

K-Planes-90 0.946 0.967 0.951 0.898 0.946 0.929 0.989 0.913 0.974
w/ TILTED 0.991 0.996 0.981 0.991 0.994 0.986 0.995 0.990 0.992

Table 1: K-Plane results for SDF reconstruction with random scene rotation. We report metrics with 30, 60, and 90
channels.



Methods Avg Bunny Lucy Chair Armadillo Dragon Cheburashka Beast Happy

IoU↑
VM-45 0.866 0.974 0.802 0.950 0.913 0.821 0.969 0.977 0.519
w/ TILTED 0.974 0.994 0.973 0.936 0.988 0.952 0.979 0.981 0.991

VM-90 0.946 0.982 0.956 0.948 0.984 0.762 0.981 0.972 0.985
w/ TILTED 0.977 0.995 0.984 0.897 0.994 0.978 0.995 0.987 0.989

VM-135 0.982 0.988 0.969 0.974 0.987 0.971 0.986 0.988 0.991
w/ TILTED 0.988 0.996 0.982 0.976 0.992 0.981 0.994 0.987 0.994

Table 2: Vector-matrix results for SDF reconstruction with random scene rotation. We report metrics with 45, 90, and
135 channels.

B.2. SDF results, without random scene rotation

In this section, we report SDF reconstruction metrics when we turn off random scene rotation. Metrics here are similar to
those when we include random scene rotation. In the main paper body, we report metrics with random rotation included.

Methods Avg Bunny Lucy Chair Armadillo Dragon Cheburashka Beast Happy

IoU↑
K-Planes-30 0.949 0.970 0.945 0.965 0.945 0.843 0.989 0.970 0.966
w/ TILTED 0.989 0.996 0.983 0.988 0.992 0.979 0.995 0.988 0.990

K-Planes-60 0.952 0.972 0.954 0.964 0.951 0.842 0.993 0.972 0.969
w/ TILTED 0.990 0.997 0.982 0.991 0.991 0.981 0.996 0.989 0.993

K-Planes-90 0.952 0.977 0.945 0.959 0.961 0.838 0.994 0.971 0.971
w/ TILTED 0.991 0.996 0.985 0.990 0.996 0.979 0.994 0.995 0.992

Table 3: K-Plane results for SDF reconstruction without random scene rotation. We report metrics with 30, 60, and 90
channels.

Methods Avg BunnySO(3) LucySO(3) ChairSO(3) ArmadilloSO(3) DragonSO(3) CheburashkaSO(3) BeastSO(3) HappySO(3)

IoU↑
VM-45 0.970 0.990 0.927 0.975 0.970 0.952 0.988 0.981 0.980
w/ TILTED 0.982 0.995 0.980 0.980 0.970 0.975 0.988 0.982 0.989

VM-90 0.979 0.993 0.971 0.991 0.955 0.960 0.992 0.983 0.988
w/ TILTED 0.989 0.995 0.985 0.989 0.993 0.976 0.993 0.987 0.991

VM-135 0.982 0.993 0.973 0.987 0.991 0.964 0.977 0.981 0.989
w/ TILTED 0.988 0.996 0.985 0.989 0.994 0.983 0.997 0.966 0.993

Table 4: Vector-matrix results for SDF reconstruction without random scene rotation. We report metrics with 45, 90,
and 135 channels.

B.3. Ablations on coarse-to-fine optimization

We report an ablation for the low pass-based coarse-to-fine optimization in Table 5.

2



Methods (KPlane) Axis-aligned with TILTED-5 with TILTED-10

Runtime (minutes : seconds) 06:29 08:03 14:05

Table 6: SDF KPlane Runtime

Methods Lucy Dragon

IoU ↑
TILTED-VM w/o coarse-to-fine 0.975 0.976
TILTED-VM w/ coarse-to-fine 0.985 0.981

TILTED-K-Planes w/o coarse-to-fine 0.974 0.977
TILTED-K-Planes w/ coarse-to-fine 0.988 0.979

Table 5: Ablation for coarse-to-fine optimization inspired by Nerfies [27] and BARF [26]. Coarse-to-fine optimization
consistently improves performance for TILTED SDF reconstructions.

C. 2D Results

C.1. Experiments on various latent grid resolutions

In this section, we vary latent grid resolution for 2D image regression task. As shown in Figure 1, with large grid resolution,
axis-aligned models will produce noisy images whereas TILTED can produce images with much less noise.

Grid Resolution 32 64 128 256 512 1024

Fox (axis-aligned) 21.26 21.98 22.31 21.63 17.23 10.34
Fox (TILTED) 21.33 22.19 22.52 22.23 19.21 17.00

Bridge (axis-aligned) 20.95 21.96 22.99 23.63 23.46 20.90
Bridge (TILTED) 21.43 22.28 23.34 24.16 24.08 22.23

Painting (axis-aligned) 25.59 26.16 26.51 26.76 26.40 18.22
Painting (TILTED) 25.83 26.5 26.81 26.94 26.81 22.15

Table 7: PSNR for 2D Image Regression task using various latent grid resolutions

PSNR: 10.34 → 17.00 PSNR: 20.90 → 22.23 PSNR: 18.22 → 22.51

Figure 1: Implicit regularization via TILTED. Reconstruction quality improves dramatically when TILTED is applied to
an overparameterized latent grid with resolution 1024.
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D. 2D Runtime Analysis
We compare and report runtime for 2D image regression. We train axis-aligned and TILTED model variants with eight

transformations for 5K iterations. Experiments are run on a single RTX3080 GPU.

Methods Axis-aligned with TILTED-8

Runtime (minutes : seconds) 03:24 03:26

Table 8: 2D runtime measurement.

E. Unifying factored feature volumes
In this section, we concretize how feature volume decompositions used by prior work can be instantiated using the common

notation that we present:

Z = Reduce
([

InterpF1
(Proj1(p))

]
, . . . ,[

InterpFF
(ProjF (p))

])
,

(E.1)

where, as earlier, p is an input coordinate and Z is an output that can be used to regress quantities like radiance or signed
distance. This unified formulation, which closely mirrors the structure of our implementation, enables integration of the latent
registration mechanism proposed by TILTED in a general-purpose way.

E.1. Vector outer products

Among the best-known approaches for factoring tensors is the classic CANDECOMP/PARAFAC (CP) decomposition,
which has been studied as a baseline for factoring latent grids in prior work [31]. In 3D, the CP decomposition is equivalent to
a single vector-matrix decomposition when the matrix rank is constrained to rank-1 and can thus be represented with a vector
outer product.

To build CP-decomposed latent structures, a channel dimension is included to instantiate three paired 1D feature grids and
projection functions:

F1 ∈ Rw×c

F2 ∈ Rh×c

F3 ∈ Rd×c

Proj1(p) = px ∈ R
Proj2(p) = py ∈ R
Proj3(p) = pz ∈ R

Wherew, h, and d are the spatial dimensions of the voxel grid we aim to represent, and c is a channel count. After interpolation,
an element-wise (Hadamard) product � is used to reduce interpolated latents Z1, Z2, and Z3 into the final latent Z:

Reduce(Z1,Z2,Z3) = Z1 �Z2 �Z3 (E.2)

E.2. Tri-plane architectures

Beginning in generative 3D [25, 33], several works have evaluated tri-plane architectures for decomposing latent 3D grids.
The key idea of a tri-plane is to build feature grids along the XY, YZ, and XZ planes (Figure 2b), which are dramatically more
compact than a full 3D tensor and conducive to generative architectures developed for 2D image synthesis. Using the notation
described above, this can be concretized by setting F = 3 and defining three axis-aligned factors and projection functions:

F1 ∈ Rw×h×c

F2 ∈ Rh×d×c

F3 ∈ Rw×d×c

Proj1(p) = (px, py) ∈ R2

Proj2(p) = (py, pz) ∈ R2

Proj3(p) = (px, pz) ∈ R2

As described in the general case above, projected coordinates are used to interpolate per-projection latent vectors Z1, Z2, and
Z3 from the corresponding set of feature grids F1, F2, and F3, which are passed through a Reduce operation to produce the
final latent vector Z.
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Several choices exist for Reduce. EG3D [25], which adapts a StyleGAN2 [21] architecture for 3D generation of faces and
cats, uses element-wise summation:

Reduce(Z1,Z2,Z3) = Z1 +Z2 +Z3

Rodin [33], which adapts latent diffusion [28] for 3D generation of avatars, adopts concatenation:

Reduce(Z1,Z2,Z3) = Z1 ⊕Z2 ⊕Z3

Outside of generative models, K-Planes [35] demonstrates that a Hadamard product for reduction is advantageous when applied
with both linear and MLP decoders. In TILTED, we adopt the K-Planes naming for tri-plane architectures due to the use of
product-based reduction.

E.3. Vector-matrix pairs

Rather than building a representation using only matrix components, TensoRF [31] proposes a factorization of voxel grids
using three vector-matrix (VM) pairs (Figure 2c). The corresponding factors and projection functions can be formalized as:

F1 ∈ Rw×c

F2 ∈ Rh×d×c

F3 ∈ Rh×c

F4 ∈ Rw×d×c

F5 ∈ Rh×c

F6 ∈ Rw×h×c

Proj1(p) = px

Proj2(p) = (py, pz)

Proj3(p) = py

Proj4(p) = (px, pz)

Proj5(p) = pz

Proj6(p) = (px, py)

The result is 6 interpolated latent vectorsZ1...6. Components from each vector-matrix pair are multiplied to produce 3 vectors,
which are then concatenated:

Reduce(Z1...6) = ⊕i=1,3,5

[
Zi �Zi+1

]
After reduction, the latent Z is passed to an MLP decoder to regress quantities like radiance or signed distance.

E.4. Multi-resolution factors

The decomposition architectures presented in Sections E.1, E.2, and E.3 all assume that decompositions exist at only one
resolution per scene. In practice, it can be advantageous to aggregate features at varying spatial resolutions [32, 35].

Adapting the notation above to the multi-resolution setting is straightforward. K-Planes, for example, runs all experiments
at four resolutions: 64 × 64, 128 × 128, 256 × 256, and 512 × 512. Generalizing to R resolutions and per-resolution scale
factor sr, the process for interpolating multi-resolution K-Planes features can be written with our abstractions as:

Fr,1 ∈ Rwr×hr×c

Fr,2 ∈ Rhr×dr×c

Fr,3 ∈ Rwr×dr×c

Projr,1(p) = (srpx, srpy)

Projr,2(p) = (srpy, srpz)

Projr,3(p) = (srpx, srpz)

for r = 1 . . . R. For the Reduce operator, the Hadamard product is applied within each resolution, and concatenation is
applied across resolutions:

Reduce({Zr,i}r,i) = ⊕r=1...R

[
Zr,1 �Zr,2 �Zr,3

]
TILTED applies this pattern to all 3D experiments.

F. Proofs for Section 3
We assume throughout these appendices that n ≥ 2.
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Notation. We write R for the reals, Z for the integers, and N for the positive integers. For positive integers m and n, we let
Rm and Rm×n denote the spaces of real-valued m-dimensional vectors and m-by-n matrices (resp.). We write ei, eij , etc.
to denote the elements of the canonical basis of these spaces, and 1m and 0m,n (etc.) to denote their all-ones and all-zeros
elements (resp.). We write 〈 · , · 〉 and ‖ · ‖F to denote the euclidean inner product and associated norm of these spaces. We
will write the `p norms ‖x‖p = (

∑
i|xi|p)1/p, with ‖x‖∞ = maxi |xi|, of these spaces as either ‖ · ‖p or ‖ · ‖`p depending

on context. We will use the notation ‖ · ‖ to denote the operator norm (the largest singular value) on m × n matrices. If
A ∈ Rm×n, we write A∗ ∈ Rn×m for its (conjugate) transpose. For matrices A and B, we write A ⊗ B to denote their
tensor product—if indices (i, j) index A and (k, l) index B, we have (A⊗B)ijkl = (A)ij(B)kl.

As a technical tool (in Section F.1), and as a mathematical abstraction (in Section F.2), we will frequently work with
“continuum” images defined on the square [−1, 1]2 ⊂ R2. By default, we will use “image coordinates” for x ∈ R2 (in
order to match the usual matrix-type indexing of discrete images), which corresponds in the canonical basis to the positively-
oriented frame [−e2, e1]. We will formally write these coordinates as x = (s, t). For an imageX : R2 → [0, 1] we will write
‖X‖Lp = (

∫
R2 |X(x)|p dx)1/p for the Lp norms, and ‖X‖L∞ = supx∈R2 |X(x)| when X is bounded. The space L2(Rd)

is a Hilbert space; as for finite-dimensional vector spaces, we will write 〈 · , · 〉L2 for its associated inner product (which we
take to be linear in its second argument), and if T : L2 → L2 is a bounded operator we will write ‖T ‖ for its (operator) norm
and T ∗ for its adjoint. Similarly, we will use notation defined above for matrix operations for its analogous application to L2

functions (e.g., tensor products). If τ : R2 → R2 is a continuous function (e.g., a rotation of the domain) and X : R2 → R
is an image, we write X ◦ τ for their composition (the “deformed image”). For sufficiently regular functions f, g : R2 → R,
we define their convolution (f ∗ g)(x) =

∫
R2 f(x

′)g(x− x′) dx′; this operation is symmetric and defines an element of Lp

when (say) f is in L1 and g is in Lp. We will use 1A to denote the indicator function associated to an event A in a probability
space; typicallyA will be a subset of R2 (e.g., describing a continuous image) or a discrete set (e.g., describing the Kronecker
delta 1i=j in summations).

Just as with discrete images, which can either be thought of as a function on the discrete grid {0, . . . ,m−1}×{0, . . . , n−1},
representing sampled intensity values, or a matrix (i.e., a finite-dimensional operator) that aggregates those values, “continuum
images” can also be thought of as either functions or operators; if f ∈ L2(R2), we will write Tf : L2(R) → L2(R) for the
“Fredholm operator” associated to an L2 function f , defined by Tf [g] =

∫
R f( · , x)g(x) dx. If T : L2(R) → L2(R) is

bounded, we denote its Hilbert-Schmidt norm by ‖T ‖HS = (
∑

n∈N‖T un‖2L2(R))
1/2, where (un)n∈N is any orthonormal

basis of L2(R); when Tf is a Fredholm operator, we have ‖Tf‖HS = ‖f‖L2(R2), analogous to the Frobenius norm of a matrix.
We will exploit this correspondence in the sequel, often without mentioning it, to identify a function f ∈ L2(R2) with its
Fredholm operator Tf when convenient (c.f. [12, §B]); for example, for f ∈ L2(R) we will write ff∗ : L2(R) → L2(R)
to denote its induced Fredholm operator, which satisfies ff∗[g] = f〈f, g〉L2(R), and we will identify it with its L2(R2)
representative satisfying ff∗(s, t) = f(s)f(t). Consult the first few paragraphs in Section F.1 for specialized notation used
in low-rank approximation proofs, and the proof of Lemma F.17 for notation used in proofs that require harmonic analysis.

Problem setup. We analyze a simple model problem that captures the improved efficiency of TILTED compared to com-
peting approaches for compactly representing non-axis-aligned scenes. Consider the following class of two-dimensional
greyscale images: let m,n ∈ N denote the image height and width, write c = [m−1

2 , n−1
2 ]∗ for the image center (we use

zero-indexing), and define a centered square template by

(X\)ij =

{
1 ‖[i, j]∗ − c‖∞ ≤ αmin{c0, c1}
0 otherwise,

(F.1)

where 0 < α < 1 controls the size of the square; we are interested in α < 1/
√
2, for a square that takes up a constant

fraction of the image pixels. We consider a rotational motion model for the square template X\: for a parameter ν ∈ [0, 2π)
corresponding to the rotation about the image center c, let τν : R2 → R2 denote the (continuum) transformation corresponding
to [

s
t

]
7→
[
cos ν − sin ν
sin ν cos ν

]([
s
t

]
− c

)
+ c, (F.2)

and consider the class of observations

S =

{
X ∈ Rm×n

∣∣∣∣∣Xij =

{
1 ‖τ−ν(i, j)− c‖∞ ≤ αmin{c0, c1}
0 otherwise

}
. (F.3)
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In our lower bounds on low-rank compression in Section F.1, we will work with a “directly-sampled” observation following the
model (F.3). In Section F.2, we will work in a continuum idealization where it is more convenient to describe the observations
in a shifted coordinate system, which we now describe.

In our proofs, we will work in a shifted coordinate system so that the center of the square (F.1) lies at the origin of the
coordinate system . In particular, in these appendices we consider the image grid {0, 1, . . . ,m− 1} × {0, 1, . . . , n− 1} − c,
corresponding to the grid

Gc = {(i, j) | i ∈ {−(m− 1)/2, . . . , (m− 1)/2}, j ∈ {−(n− 1)/2, . . . , (n− 1)/2}}.

We will often index vectors and matrices by their coordinates in Gc and its derived grids, rather than in the standard image
grid, due to the straightforward one-to-one correspondence between grids. Without loss of generality, we will assume that
m ≤ n. Let us then note that in Gc coordinates, (F.1) admits the equivalent rank-one expression

X\ = u\v
∗
\ , (u\)i =

{
1 |i| ≤ α

2 (m− 1)

0 otherwise,
, (v\)j =

{
1 |j| ≤ α

2 (m− 1)

0 otherwise,
. (F.4)

We will require, roughly, that 0 < α < 1√
2
, so that there are no boundary issues with rotated versions of the template (F.4).

The template definition (F.4) implies that as the image size m,n become large, X\ samples the same fixed continuum
template X\ : [−1, 1] → {0, 1} defined by

X\(s, t) = 1|s|≤α,|t|≤α. (F.5)

To make this correspondence, it is necessary to scale the grid Gc by the factor 2/(m− 1): this corresponds to the grid

G =

{
(i, j)

∣∣∣∣ i ∈ {−1,−1 +
2

m− 1
, . . . , 1− 2

m− 1
, 1

}
, j ∈

{
− n− 1

m− 1
, . . . ,

n− 1

m− 1

}}
. (F.6)

It is then evident that if (i, j) ∈ G, one has (X\)ij = X\(i, j).
The possible complication that one may have rectangular images with n > m is actually not essential—to see this, note

that we always have the block structure
X\ =

[
0 X̄\ 0′,

]
where X̄\ follows the definition (F.4), but with m = n, and 0 and 0′ are zero matrices of appropriate sizes. This shows
that X\ and X̄\ have the same nonzero singular values, the same left singular vectors, and right singular vectors that are in
one-to-one correspondence (simply prepend and append the appropriate number of zeros to the singular vectors of X̄\). This
implies that in our proofs for the SVD approach in Section F.1, we may assume that m = n without any loss of generality.

F.1. Proofs for Theorem 1

As mentioned previously, without loss of generality we assume m = n in this section.

Problem setting. We study the special case of ν\ = π/4, so that the observation

(X)ij = 1‖(τπ/4)ij‖∞≤α

corresponds to a “diamond”. This case makes the rank of the transformed image as large as possible.

Continuum surrogate. Our analysis will proceed by relating the singular value decomposition of X\ ◦ τν\
to the spectrum

of an ‘infinite resolution’ surrogate X , defined as

X(s, t) = X\(s cos ν\ + t sin ν\,−s sin ν\ + t cos ν\).

Whereas suppX\ = [−α, α]2, we have suppX = [−
√
2α,

√
2α]2. The ‘infinite resolution’ analogue of taking the singular

value decomposition of an image is the Schmidt decomposition (c.f. [8]) of the image’s associated Fredholm operator: define
TX : L2([−1,+1]) → L2([−1,+1]) by

TX [f ](s) =

∫
[−1,+1]

X(s, t)f(t) dt,
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and note by the geometry of the diamond X that

TX [f ](s) =

∫ √
2α−|s|

−(
√
2α−|s|)

f(t) dt, (F.7)

so that in particular TX is self-adjoint and Hilbert-Schmidt (hence compact). The spectral theorem for compact operators on
a Hilbert space [12] then implies that TX diagonalizes in an orthonormal basis of eigenfunctions (ek)k∈N ⊂ L2([−1,+1])
with corresponding eigenvalues (λk)k∈N ⊂ R:

TX =
∑
k∈N

λkeke
∗
k, (F.8)

where the equality must be interpreted in the sense of L2 → L2. We will derive a closed-form expression for (F.8) for the
diamond (Lemma F.1), and use a truncation and discretization of it as an approximate diagonalization of the discrete diamond
X .

Approximation guarantees with the SVD. The use of an infinite-dimensional surrogate to analyze X requires the instan-
tiation of some approximation machinery. We quantify reconstruction performance in terms of squared error. For any matrix
M ∈ Rn×n, we write σ1(M) ≥ σ2(M) ≥ · · · ≥ σn(M) ≥ 0 for its singular values. The singular value decomposition
asserts that for any M , there exist orthogonal matrices U(M) and V (M) such that

M = U

σ1(M)
. . .

σn(M)


︸ ︷︷ ︸

Σ

V ∗.

We recall that ‖M‖2F =
∑n

i=1 σ
2
i (M). The “rank-k” SVD approximation to M is defined as1

SVDk(M) = U


σ1(M)

. . .
σk(M)

0n−k,n−k

V ∗.

Following [7], we write ‖M‖(p)(k) =
(∑k

i=1 σ
p
i (M)

)1/p for the Ky Fan p-norms of a matrix M . These are indeed norms in
the mathematical sense (e.g., [7, §IV.2, eqn. IV.47]). From the celebrated Eckart-Young-Mirsky theorem [1, 2], we have

inf
rank(M)≤k

‖M −X‖2F =

n∑
i=k+1

σ2
i (X) = ‖X‖2F −

(
‖X‖(2)(k)

)2
,

and and it is evident that M = SVDk(X) achieves the infimum in this formula: that is,

‖SVDk(X)−X‖2F = ‖X‖2F −
(
‖X‖(2)(k)

)2
.

It follows that we can obtain lower bounds on the approximation error of SVD-based compression of X via upper bounds on
the Ky Fan 2-norms of X .

For any Ξ ∈ Rn×n, we have from the triangle inequality

‖X‖(2)(k) ≤ ‖Ξ‖(2)(k) + ‖Ξ−X‖(2)(k)

≤ ‖Ξ‖(2)(k) + ‖Ξ−X‖F, (F.9)

1The “scare quotes” are to draw attention to the fact that if M has rank strictly less than k, this approximation is not actually rank k—its rank is no larger
than rank(M).
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where the second inequality simply worst-cases over alln singular values of the residual. (F.9) is the basis of our approximation
argument: we will choose Ξ as a matrix whose spectral decay is known, and which gives a good approximation to the actual
diamond matrix X . In particular, we will consider a family of approximations Ξm, with m ∈ N, defined as

(Ξm)ij =

m∑
l=1

λlgl(i)gl(j), (F.10)

with coordinates (i, j) ∈ G and with notation as defined in Lemma F.1. We discuss the sources of error in these approximations
momentarily; let us first introduce additional notation to write these matrices more compactly. Define Um ∈ Rn×m by

(Um)ij = gj(i); i ∈ {k | ∃l : (k, l) ∈ G}, j ∈ [n],

and let Λm ∈ Rm×m be a diagonal matrix with λl on its l-th diagonal entry. Then

Ξm = UmΛmU∗
m. (F.11)

For technical reasons, we will need to consider a further level of approximation induced by smoothing the nonsmooth square
pattern X\. For σ2 > 0, we write ϕσ2(t) = 1/

√
2πσ2 exp(− 1

2σ2 t
2) for the one-dimensional standard gaussian, and mσ2 =

ϕ⊗2
σ2 for its two-dimensional analogue. Let f ∗ g denote the convolution of L2(R2) signals f and g. Then define a smoothed

family of approximations

(Ξ̃m)ij =

m∑
l=1

λl(ϕσ2 ∗ gl)(i)(ϕσ2 ∗ gl)(j). (F.12)

As above, let Ξ̃m denote the matrix representation of this construction:

Ξ̃m = ŨmΛmŨ∗
m. (F.13)

Relative to the continuum diamond X , there are three main sources of error in the approximations (F.12). The parameter
m controls a truncation of the infinite series of eigenfunctions that defines TX , and the grid resolution (proportional to n)
controls a discretization error relative to the continuum imageX . In addition, the smoothing scale σ2 controls a further error,
since the smoothed eigenfunctions do not coincide with eigenfunctions of the ‘smoothed operator’. These three parameters
are in tension—choosing m larger recovers more terms in the series defining TX , but when the grid resolution is fixed at
2/(n − 1), the fact that the eigenfunctions gl become more and more oscillatory at larger values of l suggests a larger and
larger discretization error, and a need for a smaller and smaller smoothing scale σ2 to avoid destroying the spectral structure
of the eigenfunctions gl. We will choose these parameters in tandem with the SVD rank k in (F.9) in order to guarantee as
strong of a lower bound on the approximation error as possible.

Main result. Our main result is an inapproximability result for sublinear low-rank approximations to X\ ◦ τν , up to a
threshold.

Theorem F.1. There are absolute constants c, C,C ′ > 0 such that the following holds. Let ν = π/4 and α = 1/
√
2, and

consider the observation
(Xν)ij = 1‖(τν)ij‖∞≤α.

For every n ≥ max{C,C ′k6}, one has for every X̂ ∈ Rn×n with rank no larger than k

1

n2

∥∥∥X̂ −Xν

∥∥∥2
F
≥ c

1 + k
.

Proof. We instantiate the argument discussed in the previous paragraph, culminating in (F.9). Below, we will occasionally not
calculate precise constants for simplicity, and similarly we will fix α = 1/

√
2, allowing us to treat it as an absolute constant.

Put
X̄ = ϕ⊗2

σ2 ∗Xν

for the smoothed observation (note that (Xν)ij = Xν(i, j) for (i, j) ∈ G), let Ḡ = (−1,−1) + 2
n−1Z

2 denote the infinitely-
extended grid G defined in (F.6), and let (X̄)ij = X̄(i, j) for (i, j) ∈ Ḡ. The inclusion G ⊂ Ḡ means that we can naturally
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think of X̄ as a matrix indexed byG as well (via restriction), and we will write ‖ ·‖`2(G) and ‖ ·‖`2(Ḡ) to denote the respective
norms. Observe that, by linearity of the convolution operation and Lemma F.1, we have for (i, j) ∈ Ḡ

(X̄)ij = (ϕ⊗2
σ2 ∗Xν)(i, j)

=

∞∑
l=1

λl(ϕσ2 ∗ gl)(i)(ϕσ2 ∗ gl)(j)

= (Ξ̃)ij +


∞∑

l=m+1

λl(ϕσ2 ∗ gl)(ϕσ2 ∗ gl)∗︸ ︷︷ ︸
∆tail

 (i, j). (F.14)

Let X̂ be any approximation to Xν with rank at most k. For technical convenience, we want to compare `2(G) norms to
`2(Ḡ) norms—note that these are distinct when we consider our smoothed approximation X̄ , because convolution with the
mollifier enlarges the support to be outside of [−1, 1]2. We extend X̂ and Xν to all of Ḡ by zero-padding, and note that∥∥∥X̂ −Xν

∥∥∥
F
=
∥∥∥X̂ −Xν

∥∥∥
`2(G)

=
∥∥∥X̂ −Xν

∥∥∥
`2(Ḡ)

.

By the triangle inequality, we have∥∥∥X̂ −Xν

∥∥∥
`2(G)

≥
∥∥∥X̂ − X̄

∥∥∥
`2(G)

−
∥∥X̄ −Xν

∥∥
`2(G)

,

We can thus apply the EYM theorem to obtain

∥∥∥X̂ − X̄
∥∥∥
`2(G)

≥
√∥∥X̄∥∥2

`2(G)
−
(∥∥X̄∥∥(2)

(k)

)2
. (F.15)

Notice that, by (F.14) and the fact that the Ky Fan 2-norms are mathematically norms, we have

(∥∥X̄∥∥(2)
(k)

)2
≤
(∥∥∥Ξ̃∥∥∥(2)

(k)
+ ‖∆tail‖(2)(k)

)2

=

(∥∥∥Ξ̃∥∥∥(2)
(k)

)2

+
(
‖∆tail‖(2)(k)

)2
+ 2
∥∥∥Ξ̃∥∥∥(2)

(k)
‖∆tail‖(2)(k)

≤
(∥∥∥Ξ̃∥∥∥(2)

(k)

)2

+ ‖∆tail‖2`2(G) + 2
∥∥∥Ξ̃∥∥∥(2)

(k)
‖∆tail‖`2(G)

≤
(∥∥∥Ξ̃∥∥∥(2)

(k)

)2

+ ‖∆tail‖2`2(Ḡ) + 2
∥∥∥Ξ̃∥∥∥(2)

(k)
‖∆tail‖`2(Ḡ).

Moreover, by Lemmas F.2 and F.3, we have(∥∥∥Ξ̃m

∥∥∥(2)
(k)

)2

≤ n2

4

(
4α2 − 16α2

π2

1

2min{m, k}+ 1

)
+ Cn(m(1 + logm)1/2 + nσ2m2)

+ C ′(m2(1 + logm) + n2σ4m4).

Meanwhile, by (F.14), we have that ∆tail is in L1(R2), and its L1 norm is no larger than that of X̄ . Applying Lemma F.17
thus implies

‖∆tail‖2`2(Ḡ) ≤
n2

4
‖∆tail‖2L2 +

C

σ4
(1 + nσ).
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By Young’s inequality, we have that ‖∆tail‖L2 is less than the corresponding tail sum without smoothing. Now notice that, by
orthogonality, ∥∥∥∥∥

∞∑
l=m+1

λlglg
∗
l

∥∥∥∥∥
2

L2

=

∞∑
l=m+1

λ2l

≤ 32α2

π2

1

2m+ 1
,

following the arguments in the proof of Lemma F.3 (the last estimate assumes m ≥ 1). Thus

‖∆tail‖2`2(Ḡ) ≤
32α2n2

4π2

1

2m+ 1
+

1

σ4
(1 + nσ).

Combining these estimates, we have(∥∥X̄∥∥(2)
(k)

)2
≤ n2α2 +

4n2

π2

1

2m+ 1
− 2n2/π2

2min{m, k}+ 1
+ Cn(m(1 + logm)1/2 + nσ2m2) + C ′(m2(1 + logm) + n2σ4m4)

+ C ′′(1 + nσ)/σ4 + C ′′′
(
n+

√
nm log1/2m+ nσm+m

√
logm+ nσ2m2

)(
n√
m

+

√
1 + nσ

σ4

)
.

To simplify the residual term, we will choose m = n1/6 and σ = m−3/2. Evaluating the residual in the previous expression
shows that for n sufficiently large, there is an absolute constant C > 0 such that(∥∥X̄∥∥(2)

(k)

)2
≤ n2α2 +

4n2

π2

1

2m+ 1
− 2n2/π2

2min{m, k}+ 1
+ Cn23/12.

Similarly, when m ≥ Ck for a sufficiently large constant C, this bound is upper bounded by(∥∥X̄∥∥(2)
(k)

)2
≤ n2α2 − Cn2

k + 1
+ C ′n23/12.

Now, plugging this estimate into (F.15), we have∥∥∥X̂ −Xν

∥∥∥
`2(G)

≥
√∥∥X̄∥∥2

`2(G)
− n2α2 +

Cn2

1 + k
− C ′n23/12 −

∥∥X̄ −Xν

∥∥
`2(G)

.

We just need to estimate the remaining error terms. By Lemma F.4, we have for m ≥ 22/3∥∥X̄ −Xν

∥∥2
`2(G)

≤ n2σ8

π2
+

2n

π
+
n2
√
48σ2 log(1/σ)

π
.

We have chosen σ = n−1/4, which makes the residuals in this expression of order n3/2: for sufficiently large n,∥∥X̄ −Xν

∥∥2
`2(G)

≤ Cn3/2

for an absolute constant C > 0. Similarly, by this last bound and Lemma F.5 together with the triangle inequality, we have
for n sufficiently large ∥∥X̄∥∥2

`2(G)
≥
(
‖Xν‖`2(G) −

∥∥X̄ −Xν

∥∥
`2(G)

)2
= ‖Xν‖2`2(G) − 2‖Xν‖`2(G)

∥∥X̄ −Xν

∥∥
`2(G)

≥ n2α2 − 5n− Cn7/4

where we use the trivial upper bound ‖Xν‖`2(G) ≤ n. Plugging into our previous EYM estimate and noticing that the previous
residual dominates, we have for n sufficiently large∥∥∥X̂ −Xν

∥∥∥
`2(G)

≥
√

Cn2

1 + k
− C ′n23/12 − C ′n3/4.
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We have chosen σ = n−1/4, which makes the residuals of order n3/2, which is lower order than the existing residual n23/12.
Choosing n sufficiently large, we can find absolute constants c, C,C ′ > 0 such that∥∥∥X̂ −Xν

∥∥∥
`2(G)

≥
√

cn2

1 + k
− Cn23/12 − C ′n3/4.

For the RMSE, this gives

1

n2

∥∥∥X̂ −Xν

∥∥∥2
`2(G)

≥ c

1 + k
− Cn−1/12 − 2C ′n−1/4

√
c

1 + k
− Cn−1/12.

Because we have k ≤ Cm = Cn1/6, we have for large n

1

n2

∥∥∥X̂ −Xν

∥∥∥2
`2(G)

≥ c

1 + k
− C ′ 1

n1/4
√
k
,

and when k ≤ Cn1/2 for a certain absolute constant C, it follows

1

n2

∥∥∥X̂ −Xν

∥∥∥2
`2(G)

≥ c

1 + k

for a sufficiently small absolute constant c. Because k ≤ Cm and m = n1/6, this condition is satisfied.

Remark F.1. Theorem F.1 asserts lower bounds up to a threshold k . n1/6. Based on empirical evidence and certain key
residuals in our proofs, we believe it should be possible to assert the same lower bound up to scalings k . n/ logc(n), for
some c > 0, although our arguments are insufficient to this task. The main technical issue we contend with in the proof of
Theorem F.1 is the nonsmoothness of the underlying image X\, which in our case necessitates the use of somewhat technical
smoothing arguments. Some lemmas that we develop to this end, especially Lemmas F.17 and F.18, are suboptimal, and
improvements would improve the rates. The crux of our argument should be applicable to templates X\ that have better
regularity without having to go through smoothing arguments, which should yield improved rates.

F.1.1 Supporting Results

Lemma F.1. Define a sequence

λk = (−1)k−1 4
√
2α

π(2k − 1)
, k = 1, 2, . . . , (F.16)

and functions gk : [−1, 1] → R by

gk(s) =

{
1√
α
√
2

cos
(

π
2
√
2α

(2k − 1)s
)

|s| ≤
√
2α

0 otherwise,
k = 1, 2, . . . (F.17)

Then the functions gk form an orthonormal basis for the range of the (compact, self-adjoint) operator TX , and we have the
decomposition

TX =
∑
k∈N

λkgkg
∗
k.

Proof. We take the formula (F.7) as our starting point. Because of the spectral theorem for self-adjoint compact operators on
a Hilbert space, we have the decomposition (F.8) for TX . Our approach will be to study the eigenvalue equation

TX [g] = λg, λ 6= 0, g 6= 0, (F.18)

and to produce a large enough family of solutions (λ, g) to this equation that we can assert that we have produced the eigenval-
ues and eigenfunctions asserted by the spectral theorem in (F.8). To begin, we make several preliminary observations about
solutions to the eigenvalue equation (F.18). First, we note from (F.7) and the change of variables formula that

TX [f ](
√
2αs) =

√
2α

∫ 1−|s|

−(1−|s|)
f(
√
2αt) dt,
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so that, if for ε > 0 we write Sε[g](u) = g(εu) as the dilation operator (which satisfies S−1
ε = Sε−1 ), we have

TX = S√
2αT̄XS−1√

2α
, (F.19)

where T̄X : L2([−1, 1]) → L2([−1, 1]) is defined as

T̄X [f ](s) =
√
2α

∫ 1−|s|

−(1−|s|)
f(t) dt.

In particular, TX is similar to the operator T̄X . We therefore focus our analysis on T̄X below. Next, note that by the Schwarz
inequality, we have ∣∣T̄X [f ](s)

∣∣ ≤ √
2α‖f‖L2‖1[−(1−|s|),1−|s|]‖L2

= 4α‖f‖L2

√
1− |s|.

In particular, we have T̄X [f ](±1) = 0 for any f ∈ L2. Thus, if f is moreover a solution to (F.18), it is necessary that f(±1) =
0, giving us boundary conditions for the eigenvalue equation. Similarly, the formula (F.7) shows that T̄X [f ](s) = T̄X [f ](−s)
for any f ∈ L2, so any f solving (F.18) also satisfies even symmetry.

We proceed with a standard bootstrapping argument—we start by seeking only solutions to (F.18) that are infinitely differ-
entiable. For any |s| > 0, differentiating (F.7) gives the equivalent boundary value problem

λg′(s) = −
√
2α sign(s) (g(1− |s|)− g(−(1− |s|))) , g(±1) = 0

for the eigenvalue equation (F.18). By even symmetry of g, this is equivalent to the problem

λg′(s) = −2
√
2α g(1− s), g(1) = 0, g′(0) = 0

with g ∈ C∞([0, 1]). Differentiating once more to eliminate the ‘space reversal’ on the RHS, we obtain the (necessary) system

g′′ +
8α2

λ2
g = 0, g(1) = 0, g′(0) = 0.

This is a second-order linear ODE. It has as its solutions

g(s) = A cos

(
2
√
2α

|λ|
s

)
+B sin

(
2
√
2α

|λ|
s

)

for constantsA,B to be determined with the boundary conditions. The condition g′(0) = 0 implies thatB = 0. The condition
g′(1) = 0 implies either that A = 0 or that

2
√
2α

|λ|
∈ π

2
(2Z+ 1) ,

i.e., that the frequency is an odd multiple of π/2. This implies

|λk| =
4
√
2α

π(2k + 1)
, k = 0, 1, . . . ,

and in particular
gk(s) = Ak cos

(π
2
(2k + 1)s

)
, k = 0, 1, . . . ,

where the constants Ak can be determined such that g has unit L2 norm. We have∫ 1

−1

gk(s)gk′(s) ds =
1

2

∫ 1

−1

(cos(π(k − k′)s) + cos(π(k + k′ + 1)s)) ds

= (1k=k′ + 1k+k′+1=0)

= 1k=k′ .
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In particular, Ak = 1. It remains to determine the signs of the eigenvalues λk. We calculate

T̄X [gk](s) = 2
√
2α

∫ 1−|s|

0

cos
(π
2
(2k + 1)s

)
= |λk| sin

(π
2
(2k + 1)(1− |s|)

)
= |λk| sin

(π
2
(2k + 1)

)
cos
(π
2
(2k + 1)s

)
= (−1)k|λk|gk(s).

In particular, the functions gk form a mutually orthogonal set of eigenfunctions of T̄X with corresponding eigenvalues

λk = (−1)k
4
√
2α

π(2k + 1)
, k = 0, 1, . . .

To conclude, we note that from (F.19) that the functions fk : [−1,+1] → R defined by

fk(s) =

{
1√
α
√
2

cos
(

π
2
√
2α

(2k + 1)s
)

|s| ≤
√
2α

0 otherwise,
k = 0, 1, . . .

form an orthonormal basis for the image of TX , and together with the eigenvalues λk defined above provide a Schmidt de-
composition of the operator TX :

TX =
∑
k∈N0

λkfkf
∗
k .

This completes the proof.

Lemma F.2. For all m ∈ N, any k ∈ [n], and any σ2 > 0, one has for the operator defined in (F.11)∥∥∥Ξ̃m

∥∥∥(2)
(k)

≤ n

2
‖Λm‖(2)(k) +

4m(1 + logm)1/2

α
+
πnσ2m2

32
√
2α

.

Proof. We build from the matrix representation (F.11) of Ξ̃m. The idea of the proof is straightforward: if Ũm had orthonormal
columns, we would have immediately ∥∥∥Ξ̃m

∥∥∥(2)
(k)

= ‖Λm‖(2)(k), (F.20)

by unitary invariance. Because of discretization and smoothing errors, Ũm is not an orthonormalm-frame, so (F.20) does not
hold. However, when n is large and m is not too large relative to n, we can guarantee that Ũm is close to orthonormal, which
we will combine with a perturbation result (Lemma F.16) to obtain the claim.

By Lemma F.16 and the triangle inequality, we have∥∥∥Ξ̃m

∥∥∥(2)
(k)

≤
∥∥∥|Λm|1/2Ũ∗

mŨm|Λm|1/2
∥∥∥(2)
(k)

≤ n
2 ‖Λm‖(2)(k) +

∥∥∥|Λm|1/2
(
Ũ∗

mŨm − n
2 I
)
|Λm|1/2

∥∥∥(2)
(k)

≤ n
2 ‖Λm‖(2)(k) +

∥∥∥|Λm|1/2
(
Ũ∗

mŨm − n
2 I
)
|Λm|1/2

∥∥∥
F
, (F.21)

where in the final inequality we worst-case the residual by summing over all singular values. We will bound the residual term
in (F.21) by bounding the magnitude of each of its elements. For j = 0, 1, . . . ,m − 1, let ũm,j denote the j-th column of
Ũm, and let π1(G) denote the projection of the rectangle G onto its first coordinate. Then (2/n)〈ũm,j , ũm,j′〉 is a Riemann
sum corresponding to the integral of the function (ϕσ2 ∗ gj)(ϕσ2 ∗ gj′) over [−1, 1]. We have from the Leibniz rule

‖(ϕσ2 ∗ gj)(ϕσ2 ∗ gj′)‖Lip = ‖ϕσ2 ∗ gj‖L∞‖ϕσ2 ∗ gj′‖Lip + ‖ϕσ2 ∗ gj‖Lip‖ϕσ2 ∗ gj′‖L∞

=
1√
2α

(‖gj‖Lip + ‖gj′‖Lip)

=
π(j + j′ + 1)

2α2
,
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where we use the fact that convolution with a gaussian does not increase L∞ norms (a special case of Young’s inequality
[4, Ch. I, Thm 1.3]) nor Lipschitz seminorms (the functions gj are all in C∞, so we can differentiate under the integral and
then apply Jensen’s inequality, since the gaussian has unit L1 norm). Thus, by Lemma F.15 and Lemma F.1 and the triangle
inequality, we have∣∣∣〈ũm,j , ũm,j′〉 −

n

2
1j=j′

∣∣∣ ≤ ∣∣∣〈ũm,j , ũm,j′〉 −
n

2
〈ϕσ2 ∗ gj , ϕσ2 ∗ gj′〉L2

∣∣∣+ ∣∣∣n
2
〈ϕσ2 ∗ gj , ϕσ2 ∗ gj′〉L2 − n

2
1j=j′

∣∣∣
≤ n

2
|〈ϕσ2 ∗ gj , ϕσ2 ∗ gj′〉L2 − 1j=j′ |+

π(j + j′ + 1)

2α2
. (F.22)

To handle the remaining residual, we will apply Lemma F.18. This gives

n

2
|〈ϕσ2 ∗ gj , ϕσ2 ∗ gj′〉L2 − 1j=j′ | ≤

nσ2

2
‖g′j‖L2‖g′j′‖L2 ,

and from Lemma F.1 and a L1-L∞ estimate, we have

‖g′j‖L2 ≤ π(2j + 1)

2
√
2α

,

whence
n

2
|〈ϕσ2 ∗ gj , ϕσ2 ∗ gj′〉L2 − 1j=j′ | ≤

nσ2π2(2j + 1)(2j′ + 1)

16α2
.

In particular, substituting this estimate into (F.22) gives∣∣∣〈ũm,j , ũm,j′〉 −
n

2
1j=j′

∣∣∣ ≤ nσ2π2(2j + 1)(2j′ + 1)

16α2
+
π(j + j′ + 1)

2α2
. (F.23)

From the definition of Λm, it follows∥∥∥|Λm|1/2
(
U∗

mUm − n
2 I
)
|Λm|1/2

∥∥∥2
F
≤ 16

α2

∑
1≤i,j≤m

(i+ j − 1)2

(2i− 1)(2j − 1)
+
π2n2σ4

211α2

∑
1≤i,j≤m

(2i− 1)(2j − 1).

The second sum evaluates to m4. For the first sum, note that i+ j − 1 = 1
2 ((2i− 1) + (2j − 1)), so

(i+ j − 1)2

(2i− 1)(2j − 1)
=

1

4

(√
2i− 1

2j − 1
+

√
2j − 1

2i− 1

)2

≤ 1

2

(
2i− 1

2j − 1
+

2j − 1

2i− 1

)
,

by the inequality a+ b ≤ 2(a2 + b2). When summed over the grid [m]2, the two functions of i, j in the last inequality must
be equal by symmetry. Thus ∑

1≤i,j≤m

(i+ j − 1)2

(2i− 1)(2j − 1)
≤

∑
1≤i,j≤m

2i− 1

2j − 1

= m2
m∑
j=1

1

2j − 1
.

By the usual estimates logm ≤
∑m

j=1
1
j ≤ 1+logm for the harmonic numbers, we have

∑m
j=1

1
2j−1 ≤ 1+log(2m)− 1

2 logm,
which in turn is less than 1 + logm when m ≥ 4. In addition, one can check numerically that the same estimate holds for
m ∈ {1, 2, 3, 4}. We have thus shown∥∥∥|Λm|1/2

(
U∗

mUm − n
2 I
)
|Λm|1/2

∥∥∥2
F
≤ 8m2(1 + logm)

α2
+
π2n2σ4m4

211α2
,

which establishes the claim when combined with our previous estimates.
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Lemma F.3. For all m ∈ N and any k ∈ [n], one has for the operator defined in (F.11)

‖Λm‖(2)(k) ≤

√
4α2 − 16α2

π2

1

2min{m, k}+ 1
.

Proof. We have by definition

(
‖Λm‖(2)(k)

)2
=

32α2

π2

min{k,m}∑
i=1

1

(2k − 1)2

=
32α2

π2

 ∞∑
i=1

1

(2k − 1)2
−

∞∑
i=1+min{k,m}

1

(2k − 1)2

 . (F.24)

For the first term, we have
∞∑
i=1

1

(2k − 1)2
=

∞∑
i=1

1

k2
−

∞∑
i=1

1

(2k)2

=
3

4

∞∑
i=1

1

k2

=
π2

8
.

For the second term, we have from the integral test estimate

∞∑
i=1+min{k,m}

1

(2k − 1)2
≥
∫ ∞

1+min{k,m}

1

(2t− 1)2
dt

=
1
2

2min{k,m}+ 1
.

Plugging into (F.24) and taking square roots gives the claim.

Lemma F.4. Consider the smoothed template X̄ , as in Theorem F.1, with sampling X̄ on the grid G. Let X denote the
“directly sampled” template

(X)ij = 1‖(τπ/4)ij‖∞≤α,

where we recall (F.96) and (F.97). Then if σ ≤ 1
2 , one has

∥∥X̄ −X
∥∥2
`2(G)

≤ n2σ8

π2
+

2n

π
+
n2
√
48σ2 log(1/σ)

π
.

Proof. Note that by definition

X̄(i, j) =

∫
R2

ϕσ2((i, j)− x′)X(x′) dx′.

Because
ϕσ2(x) =

1

2πσ2
e−

1
2σ2 ‖x‖2

2 ,

for ‖x‖22 ≥ 12σ2 log(1/σ), one has

ϕσ2(x) ≤ σ4

2π
. (F.25)

Since ‖x‖2 ≥ ‖x‖∞ and ‖Rνx‖2 = ‖x‖2, if ‖Rπ/4x‖2∞ ≥ 12σ2 log(1/σ), then (F.25) also holds.
Consider the set

S =
{
(i, j) ∈ G

∣∣∣ ∣∣∥∥(τπ/4)ij∥∥∞ − α
∣∣ >√12σ2 log(1/σ)

}
, (F.26)
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and write Sc for the complement of S relative to G. First, suppose that (i, j) ∈ S is not in the support of X . We have
X(i, j) = 0, and

X̄(i, j) =

∫
R2

ϕσ2((i, j)− x′)X(x′) dx′

=

∫
‖Rπ/4x‖∞≤α

ϕσ2((i, j)− x′)X(x′) dx′ +

∫
‖Rπ/4x‖∞≥α

ϕσ2((i, j)− x′)X(x′) dx′

≤ σ4

2π

∫
‖Rπ/4x‖∞≤α

X(x′) dx′

=
σ4

π

by the triangle inequality. Evidently X̄(i, j) ≥ 0 as well. A symmetric argument applies when (i, j) ∈ S is in the support of
X , except that we obtain

X̄(i, j) =

∫
R2

ϕσ2(x′)X((i, j)− x′) dx′

=

∫
‖Rπ/4((i,j)−x′)‖∞≤α

ϕσ2(x′) dx′

= 1−
∫
‖Rπ/4((i,j)−x′)‖∞≥α

ϕσ2(x′) dx′,

whence ∣∣X̄(i, j)− 1
∣∣ ≤ ∫

‖Rπ/4((i,j)−x′)‖∞≥α

ϕσ2(x′) dx′

≤
∫
‖Rπ/4x′‖∞≥

√
12σ2 log(1/σ)

ϕσ2(x′) dx′

≤
∫
‖x′‖2≥

√
6σ2 log(1/σ)

ϕσ2(x′) dx′.

The last integral can be estimated with the fact that the gaussian tail integral is bounded by the density. This gives∣∣X̄(i, j)− 1
∣∣ ≤ σ6

24π log(1/σ)
≤ σ4

π
,

where the last simplification holds if σ ≤ 1
2 . Thus, we have shown that for any (i, j) ∈ S, we have

|X(i, j)− X̄(i, j)| ≤ σ4/π. (F.27)

Next, we argue that the cardinality |S| is sufficiently large. We will do this by bounding the size of Sc. We have by
inequalities for `p norms and (F.96) and (F.97)

1√
2

∥∥∥∥[ij
]∥∥∥∥

2

≤ ‖τνij‖∞ ≤
∥∥∥∥[ij
]∥∥∥∥

2

,

so if we define

S′ =

{
(i, j) ∈ G

∣∣∣∣ ∣∣∣∣∥∥∥∥[ij
]∥∥∥∥

2

− α

∣∣∣∣ ≤√24σ2 log(1/σ)
}
,

we have Sc ⊂ S′. The square [−1, 1] is covered by the union of balls of radius
√
2/(n− 1) centered at each point of the grid

G. Consider the subset

U =

{
(u, v) ∈ [−1, 1]

∣∣∣∣∣ ∣∣∣√u2 + v2 − α
∣∣∣ ≤ √

2

n− 1
+
√

24σ2 log(1/σ)

}
.
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Then by the triangle inequality and the above covering reasoning, S′ + {(u, v) ∈ R2 |
√
u2 + v2 ≤

√
2/(n− 1)} ⊂ U , from

which it follows by a volume bound

|Sc|π

( √
2

n− 1

)2

≤ Vol(U).

We calculate readily

Vol(U) = 4α

( √
2

n− 1
+
√

24σ2 log(1/σ)

)
,

whence

|Sc| ≤ 2n

π
+
n2
√
48σ2 log(1/σ)

π
,

where the last inequality worst-cases over our condition on α.
Now, to conclude, we have by the above

∥∥X̄ −X
∥∥2

F =
∑

(i,j)∈S

(
(X̄)ij − (X ◦ τν)ij

)2 ∑
(i,j)∈Sc

(
(X̄)ij − (X ◦ τν)ij

)2
≤ n2σ8

π2
+ |Sc| sup

(i,j)∈G

(
(X̄)ij − (X ◦ τν)ij

)2
≤ n2σ8

π2
+

2n

π
+
n2
√
48σ2 log(1/σ)

π
,

because both matrices have entries in [0, 1].

Lemma F.5. For ν = π/4, consider the “directly sampled” infinite-resolution template

(X̄)ij = 1‖(τν)ij‖∞≤α, (F.28)

where we recall (F.96) and (F.97). Then one has ∥∥X̄∥∥F ≥ n2α2 − 5n.

Proof. Consider the case ν = π/4. By rotational symmetry of X̄ by multiples of π/2, and discarding the sum over the central
axes when n is odd, we have ∥∥X̄∥∥2F =

∑
(i,j)∈G

1max{|i+j|,|i−j|}≤
√
2α

=

n−1∑
i=0

n−1∑
j=0

1max{|i−(n−1−j)|,|i−j|}≤(n−1)α/
√
2

≥ 4

bn−1
2 c∑

i=0

bn−1
2 c∑

j=0

1|i−(n−1−j)|≤(n−1)α/
√
2.

So, by the integral test estimate (because the summand is monotone increasing as a function of both i and j when the other is
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fixed) and nonnegativity,

∥∥X̄∥∥2F ≥ 4

∫ bn−1
2 c

0

∫ bn−1
2 c

0

1|i−(n−1−j)|≤(n−1)α/
√
2 di dj

= 4(n− 1)2
∫ 1

n−1 b
n−1
2 c

0

∫ 1
n−1 b

n−1
2 c

0

1|i−(1−j)|≤α/
√
2 di dj

≥ 4(n− 1)2
∫ 1

2−
1

n−1

0

∫ 1
2−

1
n−1

0

1|i−(1−j)|≤α/
√
2 di dj

≥ 4(n− 1)2

∫ 1
2

0

∫ 1
2

0

1|i−(1−j)|≤α/
√
2 di dj − 2

∫ 1
2

0

∫ 1
2

1
2−

1
n−1

1|i−(1−j)|≤α/
√
2 di dj

 ,

where in the final inequality we used permutation symmetry of the integral as a function of (i, j) to simplify the residual. Now,
the region of integration in the first term in the last line of the previous expression is equivalent to {(i, j) | ( 12 − i)+( 12 − j) ≤
α/

√
2}, which defines a right triangle with two side lengths equal to α/

√
2. Because α < 1/

√
2, the integral evaluates to

α2/4. Meanwhile, the integral in the second term is no larger than 1/2(n− 1), because the integrand is bounded by 1. Thus∥∥X̄∥∥2F ≥ (n− 1)2α2 − 4(n− 1).

Distributing in this expression and worst-casing slightly gives the claim.

F.2. Proofs for Theorem 2

Problem setup (and continuum idealization). Let k ∈ N, and consider an observation X ∈ Rm×n drawn from the class
(F.3), with rotation parameter ν\ (so that (X)ij = X\ ◦τ−ν\

(i, j) if (i, j) ∈ G, following (F.6)). For U ∈ Rm×k, V ∈ Rn×k,
we study the optimization objective

Ldiscrete(ν,U ,V ) =
1

2
‖X − (UV ∗) ◦ τ−ν‖2F, (F.29)

where here in the context of discrete images, the transformations τ−ν must be implemented with resampling (we give a brief
overview of this idea in Section F.4). The resampling operation can be chosen to be continuously differentiable, making it
amenable to gradient-based optimization on the objective Ldiscrete, but it introduces a host of discretization-based artifacts to
the optimization process that are challenging to treat.2 We will simplify the situation by considering a continuum limit of the
objective (F.29), and a corresponding continuum gradient-like iteration for its solution.

Consider operators U : Rk → L2(R), V : Rk → L2(R). These operators can be thought of as ‘matrices’, whose columns
are L2(R) functions—note that in the continuum, following (F.5) we have

X\(s, t) = 1|s|≤α︸ ︷︷ ︸
u\(s)

1|t|≤α︸ ︷︷ ︸
v\(t)

,

i.e., as an operator, X\ = u\v
∗
\ . The corresponding continuum analogue of the observation X is the deformed template

X = X\ ◦ τ−ν\
. To mirror the smoothing effect of a continuous interpolation kernel imposed in (F.95), we introduce an extra

gaussian smoothing filter ϕσ2(s, t) = (2πσ2)−1e−(s2+t2)/2σ2

to the objective function, yielding the objective

Lσ(ν,U ,V ) =
1

2
‖ϕσ2 ∗ (X − (UV ∗) ◦ τ−ν)‖2L2 . (F.30)

2In particular, note that for any ν, M 7→ M ◦τν , as defined in Section F.4, is a linear operator. If we call this operator Aν , it can be seen from Section F.4
that A∗

νAν is a banded matrix, but it is not incoherent—this means that the analysis of the problem (F.29) requires tools other those developed to analyze
matrix sensing under the RIP (c.f. [18, 29]). The situation is further complicated by the fact that the objective (F.29) simultaneously learns the sensing matrix
(in matrix sensing parlance) and the low-rank factorization, a setting that has not been considered in prior work.
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Notice that, by its definition (F.2), the map f 7→ f ◦ τ−ν is a unitary transformation (apply the change of variables formula in
the integral defining the L2 inner product). Using in addition the Lie group structure of the rotation matrices (F.2), we have
that for any f ∈ L2(R2), any ν and any σ2,

(ϕσ2 ∗ (f ◦ τν))(x) =
∫
R2

ϕσ2(x′)f(Rν(x− x′)) dx′

=

∫
R2

ϕσ2(R−ν(x
′))f(Rν(x)− x′) dx′

=

∫
R2

ϕσ2(x′)f(Rν(x)− x′) dx′

= (ϕσ2 ∗ f) ◦ τν(x) (F.31)

by the change of variables formula and rotational invariance of the gaussian function. In words, rigid motions commute with
gaussian smoothing. Applying this result together with the unitary transformation property, we can write our objective as

Lσ(ν,U ,V ) =
1

2
‖ϕσ2 ∗X − (ϕσ2 ∗ (UV ∗)) ◦ τ−ν‖2L2

=
1

2
‖(ϕσ2 ∗X) ◦ τν − ϕσ2 ∗ (UV ∗)‖2L2

=
1

2

∥∥ϕσ2 ∗
(
X\ ◦ τν−ν\

−UV ∗)∥∥2
L2 . (F.32)

We emphasize that (F.30) and (F.32) are equal, but (F.32) is more straightforward to differentiate.

Simplifications to (F.32). Our analysis will apply to a simplified version of the general objective (F.32). We discuss the
simplifications we make here.

1. Single-channel factorization (k = 1). We analyze a critically-parameterized version of the problem (F.32), where
k = 1. This leads to the objective

Lσ(ν, u, v) =
1

2

∥∥ϕσ2 ∗
(
X\ ◦ τν−ν\

− uv∗
)∥∥2

L2 , (F.33)

where u, v ∈ L2(R). When the transformation component of (F.33) is omitted, this simplification is analogous to
consideration of the rank-one matrix factorization problem [18, §3]; because the untransformed square template X\ has
“rank one” (in a suitable, generalized sense), perfect reconstruction is still possible in our setting. Although the rank-one
case is a vast simplification over the problem (F.32) with general k, we begin our analysis here because the introduction
of the simultaneous transformation optimization component to (F.33) represents a nontrivial complication with respect
to existing analyses (c.f. [15, 22]). We anticipate that the emerging understanding of overparameterized matrix sensing
will be useful in generalizing our results to the setting of general k [16, 29, 37, 38].

2. Symmetric factorization. Because the square template X\ is self-adjoint as an integral operator (in other words, the
template satisfiesX\(s, t) = X\(t, s)), it is reasonable to reduce the search space in (F.33) to factorizations where u = v.
This gives the problem

Lσ(ν, u) =
1

2

∥∥ϕσ2 ∗
(
X\ ◦ τν−ν\

− uu∗
)∥∥2

L2 . (F.34)

All of our experiments with TILTED make use of general, asymmetric grid factors, so a theoretical understanding of the
general asymmetric case (when the target templateX\ is asymmetric) remains crucial for future work. In this connection,
we note that theoretical analyses of asymmetric matrix factorization typically add an additional “balancing” regularizer
to the objective (F.32) (c.f. [14, 15, 18, 22])—in our experiments, the 2, 1 regularizer described in Section A.3 plays this
role.

Gradient-like iterations for alignment and factorization. Obtaining a gradient iteration for the objective (F.32) can be
done straightforwardly with respect to the finite-dimensional ν variable: making essential use of the duality on L2(R) and the
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fact that the convolution of two gaussian functions is another gaussian function, with variance equal to the sum of the factors’
variances, we calculate in Lemma F.7

∇νLσ(ν, u) = −
〈
ϕσ2 ∗

(
uu∗ ◦ τν\−ν

)
,

〈
∇x[ϕσ2 ∗X\],

[
0 −1
1 0

]
( · )
〉

`2

〉
L2(R2)

. (F.35)

Differentiation with respect to the u factor in (F.34) requires a slightly more technical notion of gradient. To limit technicality
in the analysis, we study instead an infinite-dimensional analogue of a projected gradient descent method, where after each
update to the u variable we project it onto the “unit sphere” in L2(R) as u 7→ u/‖u‖L2(R). Moreover, when performing
factorization, we optimize only the unsmoothed loss L0(ν, · ). We recall in Lemma F.19 that in this setting, whenever the
factorization target X\ ◦ τν−ν\

is not negative, it is equivalent in this setting to seek the largest positive eigenvalue of the
(symmetrized) operator corresponding to the factorization target. Moreover, as long as the factorization target has no negative
eigenvalues of significant magnitude,3 this process is achieved by the power method, which in our setting produces iterates

uk+1 =

(
TX\◦τν−ν\

+ T ∗
X\◦τν−ν\

)
uk∥∥∥(TX\◦τν−ν\

+ T ∗
X\◦τν−ν\

)
uk

∥∥∥
L2(R)

, (F.36)

before outputting an approximate factor for the target, which we will write as P(k, u0, ν) ∈ L2(R) (specifying the dependence
on the power method’s initialization u0 and the rotation ν applied to the template):

P(k, u0, ν) =
√

1
2u

∗
k(TX\◦τν−ν\

+ T ∗
X\◦τν−ν\

)ukuk. (F.37)

A priori, this may return a complex-valued function; we will take care in our analysis to show that this never occurs when the
iteration count is set appropriately.

Our algorithm. The key mathematical property underlying the success of TILTED in practical experiments is the fact that
incremental improvements to representation (factorization) help promote incremental improvements to alignment, and vice
versa. The algorithm we study theoretically is a simplified version of TILTED, but nonetheless captures this complex interplay
and sheds light on why it succeeds in practice. The major simplification we impose is that rather than jointly updating the
ν (alignment) iterates and the u (factorization) iterates, we will update them individually in consecutive blocks, as in an
alternating minimization procedure. Our algorithm separates into five distinct stages, described below.

Stage one: rough representation. From a “flat” initialization for the scene

u0 = 1[−1,+1], (F.38)

we perform Trough iterations of power method (F.37), to generate a roughly-localized representation of the template X\:

urough = P(Trough, u0, 0). (F.39)

This procedure corresponds to the initial iterations of TILTED in practical experiments, where the uninformative initialization
u0 does not produce sufficient gradients (in texture or geometry) for alignment to occur. The roughly-localized output urough
usefully ends up with both texture and a rough shape profile that promotes subsequent alignment.

Stage two: rough alignment. Given a step size β, we performTν iterations of gradient descent on the alignment objective
with smoothing level σ, initialized randomly:

ν0 ∼ Unif([0, 2π]), (F.40)

and with the factorization iterate at the output of the previous rough representation step:

νk+1 = νk − β∇νLσ(νk, urough), k = 0, 1, . . . , Tν − 1. (F.41)

3This is typically the case; see Lemma F.1. Our proofs show that this structure persists throughout iterations of our algorithm, as well, in order to guarantee
that our algorithm succeeds.
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We write ν̂ = νTν . The alignment problem in (F.34) has multiple optimal solutions, due to the symmetries of the alignment
target X\—this means the optimization landscape is not globally convex. At these initial iterations of the alignment proce-
dure, with a non-informative initialization, we rely on the presence of strong gradient (mnemonically, “SG”) in the objective
landscape to bring our initial iterate close to one of the several equivalent optimal solutions. At a technical level, this style of
analysis mirrors those used in other global analyses of nonconvex optimization landscapes [22].

Stage three: refined representation. This final stage of the algorithm takes advantage of the roughly-localized alignment
output from the previous stage to improve the representation quality further—the initial roughly-localized template urough from
the first stage is better localized, and its edges sharpened to match those of the target X\. Accordingly, we run Tu iterations
of power method (F.37), started with the outputs of the previous stages:

û = P(Tu, urough, ν̂). (F.42)

The algorithm’s output is the pair (ν̂, û).

Main result. Our main result establishes convergence of our alternating minimization version of TILTED to the true pa-
rameters (ν\, u\), up to symmetry, in a “hard” instance of the problem: where ν\ = π/4 (as we studied in Section F.1) and
α = 1√

2
(corresponding to an ‘in focus’ target).

Theorem F.2. Consider the iterations encompassed by (F.39), (F.42) and (F.41), with initializations (F.38) and (F.40). Sup-
pose α = 1√

2
and ν\ = π/4. There are absolute constants c1, C1, C2 > 0 such that for any parameters σ, β satisfying

σ2 ≤ 1
104 ,

β ≤ c1,

for any 0 < ε ≤ 1
768 , if the iteration counts satisfy

Trough ≥ −C1 log(σ2ε),

Tν ≥ −C2 log(3ε)
β

,

Tu ≥ 16,

then with probability over the random initialization of ν0 at least 4/7, one has

min
{
|ν̂ − ν\| mod

π

2
,
π

2
−
(
|ν̂ − ν\| mod

π

2

)}
≤ 3ε,

‖û− u\‖L2(R) ≤ 31
√
ε.

In particular, the template parameters are recovered up to symmetry.

Proof. Following the alternating structure of the algorithm we study, the proof separates into a distinct stage for each phase of
the algorithm. For concision, we will not carefully track the value of absolute constants in some parts of the proof; expressions
such as c, c1, . . . and C,C1, . . . will denote small (respectively, large) absolute constants whose value may change from line
to line unless otherwise noted. We will also use the expression f . g to denote the statement “there exists an absolute constant
C > 0 such that f ≤ Cg” for functions f , g, and analogously for f & g.

Rough factorization stage. We will apply Lemma F.6 to the final iterate (F.39), obtained via the power method (F.37); to
this end, we need to check properties of the operator

1

2

(
TX\◦τπ/4

+ TX\◦τπ/4

)
= TX\◦τπ/4

(the simplification uses symmetry properties of the π/4-rotated template), and of the initialization (F.38). Notice that by
Lemma F.1, we have ∥∥TX\◦τπ/4

∥∥ = λmax
(
TX\◦τπ/4

)
=

4

π
,
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which we will denote as λ1 (in the notation of Lemma F.6), and its corresponding unit eigenvector is v1(s) = cos(πs/2)1|s|≤1.
Moreover, Lemma F.1 shows that the sequence of eigenvalue magnitudes of this operator are a decreasing function of index
k, and therefore ∣∣∣∣λkλ1

∣∣∣∣ ≤ 4

3π
· π
4
= 1− 2

3
.

In addition, we calculate
〈u0, v1〉L2(R) = 〈1[−1,1], cos(πs/2)〉L2(R) =

4

π
,

and evidently ‖u0‖L2(R) =
√
2. Applying the second conclusion of Lemma F.6, we thus get∥∥∥∥urough −

2√
π

cos(π2 ( · ))1[−1,1]

∥∥∥∥
L2(R)

≤
√
π

3Trough−1
(F.43)

as long as Trough ≥ 2.

Rough alignment stage. To establish progress by the iteration (F.41), we combine a standard optimization analysis under
a lower bound on the magnitude of the gradient with Lemma F.9, which gives a lower bound on the ‘nominal’ value of the
gradient, and a basic perturbation analysis that uses the control we have established in the previous step between urough and
its nominal value.

First, by the fact that Trough ≥ 2 and σ ≤ 1
100 , we can apply Lemma F.10. We perform a landscape analysis of the

loss Lσ( · , urough), where we relate it to properties of the ‘nominal loss’ Lσ( · , ūrough), to guarantee progress of the gradient
iteration (F.41). The initialization ν0 ∼ Unif([0, 2π]), and following the proof of Lemma F.9, we see that the objective
ν 7→ Lσ(ν, u) (for any σ and any u) is π/2-periodic and has reflection symmetry about ν\ on the interval [ν\−π/4, ν\+π/4].
This implies that the landscape (and hence the behavior of the gradient descent iterates) is determined for all ν by its behavior
on the domain [ν\−π/4, ν\+π/4], and we can therefore assume that ν0 ∈ [ν\−π/4, ν\+π/4]; it then follows by the uniform
initialization that with probability at least (π/7)/(π/4) = 4/7, we have

|ν0 − ν\| ≤ π/7.

This means we can invoke the lower bound in Lemma F.9 to obtain that

sign(ν0 − ν\) · ∇νLσ(ν0, ūrough) & sin(|ν0 − ν\|)
& |ν0 − ν\|,

where the last inequality uses that sinx ≥ (2/π)x when 0 ≤ x ≤ π/2. Meanwhile, by the first estimate of the second
assertion in Lemma F.10 and (F.43), this implies

sign(ν0 − ν\) · ∇νLσ(ν0, urough) & |ν0 − ν\| −
3−Trough

σ2
. (F.44)

Next, using the upper bound in Lemma F.9, we have that for any ν,

|∇νLσ(ν, ūrough)| . |ν − ν\|.

Combining this with the first estimate of the second assertion in Lemma F.10 and (F.43), as above, we obtain

|∇νLσ(ν, urough)| . |ν − ν\|+
3−Trough

σ2
.

In particular, choosing β ≤ c for an absolute constant c ≤ 1 and Trough & − log(σ2ε) for any ε > 0, we have

β|∇νLσ(ν, urough)| ≤ |ν − ν\|+ ε. (F.45)

Now, for γ > 0, define the domains
Sγ = {ν ∈ R | |ν − ν\| ≥ γ}.
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Fix 0 < ε < π/14. We are going to argue that after Tν iterations of (F.41), the last iterate ν̂ satisfies ν̂ ∈ Sc3ε. We start by
proving two invariants of the sequence of iterates (F.41). First, note that

|νk+1 − ν\| = |νk − β∇νLσ(νk, urough)− ν\|
≤ 2|νk − ν\|+ ε, (F.46)

by the triangle inequality and (F.45). Next, suppose that for some k, we have νk ∈ Sε∩Scπ/7. By (F.44), if Trough & − log(σ2ε),
we have from (F.44) (via Lemma F.9)

sign(νk − ν\) · ∇νLσ(νk, urough) & |νk − ν\|. (F.47)

Suppose first that νk − ν\ ≥ 0. Then (F.47) becomes

∇νLσ(νk, urough) & νk − ν\.

In particular, the gradient at νk is nonnegative. This implies

νk+1 − ν\ = νk − β∇νLσ(νk, urough)− ν\

≤ (1− c0β) (νk − ν\)

< νk − ν\,

since β ≤ 1, where c0 > 0 is an absolute constant that we may assume is no larger than 1
2 . We also have, by (F.45), that

νk+1 − ν\ = νk − β∇νLσ(νk, urough)− ν\ ≥ −ε.

But νk ∈ Sε, so ε ≤ |νk − ν\|. We conclude

|νk+1 − ν\| ≤ max{ε, (1− c0β) |νk − ν\|} ≤ |νk − ν\|, (F.48)

and a completely analogous argument implies the same conclusion in the case where νk−ν\ ≤ 0. As a consequence, suppose
now that for some k, we have νk ∈ Sc3ε. If in fact νk ∈ Scε , we know immediately from (F.46) that νk+1 ∈ Sc3ε. On the other
hand, if instead νk ∈ Sε∩Sc3ε, we have immediately from (F.48) that νk+1 ∈ Sc3ε. We conclude the full non-escape invariant:

νk ∈ Sc3ε =⇒ νk+1 ∈ Sc3ε. (F.49)

We can now give an inductive argument to obtain the desired convergence, namely that

ν̂ ∈ Sc3ε.

First, if ν0 ∈ Sc3ε, we are done immediately, by (F.49). If not, then by the preceding parameter choices and assumption on the
initialization we have ν0 ∈ S3ε ∩ Scπ/7 and therefore ν0 ∈ Sε ∩ Scπ/7, so that by (F.48), we obtain

ν1 ∈ Scmax{ε,(1−c0β)|ν0−ν\|}.

At this point, notice that by assumption (1− c0β)|ν0 − ν\| ≥ 3
2ε, so in fact

ν1 ∈ Sc(1−c0β)|ν0−ν\|.

Proceeding inductively in this way, it follows that at iteration k ∈ N we either have νk ∈ Sc3ε or that νk−1 ∈ S3ε ∩ Scπ/7 and

νk ∈ Sc(1−c0β)|νk−1−ν\|.

Unraveling this recurrence gives
νk ∈ Sc(1−c0β)k|ν0−ν\|.

Thus, as soon as

Tν &
log(3ε)

log(1− c0β)
,

we have ν̂ ∈ Sc3ε, i.e. that
|ν̂ − ν\| ≤ 3ε. (F.50)
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Refined factorization stage. In this stage, we run power method to refine the factorization urough, using the fact that ν̂ ≈ ν\
to argue that the relevant operator for the refinement power method (F.42) (c.f. (F.36) and (F.37)), namely

X̂ =
1

2

(
X\ ◦ τν̂−ν\

+X\ ◦ τ−(ν̂−ν\)

)
,

is sufficiently close to X\ that we can guarantee the progress of the power method (F.42) by applying spectral properties of
X\ = u\u

∗
\ in Lemma F.6. To do this, we need to prove that the spectrum of X̂ has a gap. First, we note that X̂ is Hilbert-

Schmidt, by the triangle inequality and the fact that it is a Fredholm operator (together with the fact that f 7→ f ◦ τν is a
unitary transformation of L2(R2)):

‖X̂‖HS ≤ 1

2

(∥∥X\ ◦ τν̂−ν\

∥∥
HS + ‖X\ ◦ τ−(ν̂−ν\)‖HS

)
= ‖X\‖HS. (F.51)

This means that X̂ is a compact operator; we have therefore X̂ =
∑∞

i=1 λiviv
∗
i for eigenvalues (λi)i∈N ⊂ R and an orthonor-

mal basis of eigenfunctions (vi)i∈N (c.f. [12, §B]). Without loss of generality, we assume that the sequence is ordered such
that |λ1| = ‖X̂‖. To show that the spectrum has a gap in the way that is needed to apply Lemma F.6, we need to show that
λ1 > 0 and that the rest of the spectrum is bounded in magnitude away from λ1. We will establish the latter first. Note that

sup
i≥2

|λi|2 ≤
∞∑
i=2

|λi|2 = −|λ1|2 +
∞∑
i=1

|λi|2

= ‖X̂‖2HS − ‖X̂‖2.

By the triangle inequality and (as above) the fact that ‖ · ‖ ≤ ‖ · ‖HS, we have

‖X̂‖ ≥ ‖X\‖ − ‖X\ − X̂‖
≥ ‖X\‖ − ‖X\ − X̂‖HS

= ‖X\‖HS − ‖X\ − X̂‖HS

where we used the fact thatX\ = u\u
∗
\ , so that ‖X\‖HS = u∗\u\ coincides with ‖X\‖ = sup‖f‖L2≤1 |〈u\, f〉|‖u\‖L2 = ‖u\‖2L2

(apply the Schwarz inequality). Thus, if ‖X\ − X̂‖HS ≤ ‖X\‖HS, we have

sup
i≥2

|λi|2 ≤ ‖X̂‖2HS −
(
‖X\‖HS − ‖X\ − X̂‖HS

)2
≤ 2‖X\‖HS‖X\ − X̂‖HS,

where the second inequality applies (F.51) and discards the (negative) second-order term. Since u\ = 1[−1/
√
2,1/

√
2], we have

‖X\‖HS =
√
2, and to proceed using the above it suffices to control ‖X\ − X̂‖HS and show that it is no larger than

√
2. To

this end, we have ∥∥∥X̂ −X\

∥∥∥ ≤
∥∥∥X̂ −X\

∥∥∥
HS

≤ 1

2

∥∥X\ ◦ τν̂−ν\
−X\

∥∥
HS +

1

2

∥∥X\ ◦ τ−(ν̂−ν\) −X\

∥∥
HS,

where the second line uses the triangle inequality. Below, write α = 1/
√
2. One has for any ε > 0

‖X\ ◦ τε −X\‖2HS = 2‖X\‖2HS − 2〈X\ ◦ τε, X\〉L2(R2)

= 8α2 − 2〈X\ ◦ τε, X\〉L2(R2),

because the operators are Fredholm operators and τε is a unitary transformation. To estimate the cross term, we argue geo-
metrically. For |ε| ≤ 1, we have the estimate |cos ε|+ |sin ε| ≤ 1 + |ε|.This implies that

‖Rεx‖∞ ≤ ‖Rε‖∞→∞‖x‖∞
≤ ‖x‖∞ (|cos ε|+ |sin ε|)
≤ ‖x‖∞(1 + |ε|).
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Points x ∈ R2 where the inner product 〈X\ ◦τε, X\〉L2(R2) is positive are those where ‖x‖∞ ≤ α and ‖Rεx‖∞ ≤ α. By the
previous estimate, both conditions occur when ‖x‖∞ ≤ α/(1 + |ε|). Since 1/(1 + |ε|)2 ≥ (1− |ε|)2 if |ε| ≤ 1, this implies

〈X\ ◦ τε, X\〉L2(R2) ≥
∫
‖x‖∞≤α/(1+|ε|)

dx

=
4α2

(1 + |ε|)2

≥ 4α2 − 8α2|ε|,

so
‖X\ ◦ τε −X\‖2HS ≤ 16α2|ε|,

and thus, since |ν\ − ν̂| ≤ 1 by the reduction-by-symmetry to the domain [ν\ − π/4, ν\ + π/4] given in the previous phase of
the argument,

‖X̂ −X\‖ ≤ ‖X̂ −X\‖HS ≤ 2
√
2
√
|ν̂ − ν\|. (F.52)

In particular, if |ν̂ − ν\| ≤ 1
4 , we have ‖X̂ −X\‖HS ≤ ‖X\‖HS, and by the above

sup
i≥2

|λi| ≤ 2
√
2|ν\ − ν̂|1/4.

Meanwhile, under this condition the above estimates yield

|λ1| = ‖X̂‖ ≤ ‖X\‖+ ‖X\ − X̂‖

≤
√
2 + 2

√
2|ν\ − ν̂|1/2, (F.53)

and moreover, by the Schwarz inequality,

〈u\, X̂[u\]〉L2(R) ≥ 〈u\, X\[u\]〉 − ‖u\‖2L2(R)‖X̂ −X\‖

≥ ‖u\‖4L2(R) − 2
√
2‖u\‖2L2(R)|ν\ − ν̂|1/2

Since ‖u\‖L2(R) = 21/4, this means that if |ν̂ − ν\| ≤ 1
64 , we have〈

u\
‖u\‖L2

, X̂

[
u\

‖u\‖L2

]〉
L2(R)

≥ 3
√
2

4
,

and since, under this condition, we have
sup
i≥2

|λi| ≤ 1,

we conclude that

max
i∈N

λi = max
‖u‖L2(R)≤1

〈u, X̂[u]〉L2(R) ≥
〈

u\
‖u\‖L2

, X̂

[
u\

‖u\‖L2

]〉
L2(R)

> sup
i≥2

|λi|.

(c.f. the proof of Lemma F.19). In particular, we have λ1 > 0. Following as well the above arguments, we have

|λ1| ≥
√
2− 2

√
2|ν\ − ν̂|1/2 ≥ 3

√
2

4
, (F.54)

which implies the gap condition

supi≥2 |λi|
λ1

≤ 2|ν\ − ν̂|1/4

1− 2|ν\ − ν̂|1/2
≤ 8

3
|ν\ − ν̂|1/4 < 1 (F.55)
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under the preceding assumptions. Using these characterizations of the spectral gap, we can conveniently also apply [3, Propo-
sition 6.1] to obtain ∥∥∥∥ u\

‖u\‖L2

u∗\
‖u\‖L2

− v1v
∗
1

∥∥∥∥
HS

≤ 2√
2− 1

‖X\ − X̂‖HS ≤ 14
√

|ν\ − ν̂|.

Meanwhile, we have ∥∥∥∥ u\
‖u\‖L2

u∗\
‖u\‖L2

− v1v
∗
1

∥∥∥∥2
HS

= 2

(
1−

〈
u\

‖u\‖L2

, v1

〉2
)
.

Since v1 is only defined up to sign, let us suppose without loss of generality that v1 is such that 〈v1, u\〉L2 ≥ 0. Proceeding,
we then obtain ∥∥∥∥ u\

‖u\‖L2

u∗\
‖u\‖L2

− v1v
∗
1

∥∥∥∥2
HS

= 2

(
1−

〈
u\

‖u\‖L2

, v1

〉)(
1 +

〈
u\

‖u\‖L2

, v1

〉)
≥ 2

(
1−

〈
u\

‖u\‖L2

, v1

〉)
=

∥∥∥∥ u\
‖u\‖L2

− v1

∥∥∥∥2
L2(R)

.

Combining, this gives ∥∥∥2−1/4u\ − v1

∥∥∥
L2(R)

≤ 14
√

|ν\ − ν̂|. (F.56)

This allows us to lower bound the correlation between the power method initialization urough and the target eigenvector: by
the triangle inequality and the Schwarz inequality,

〈v1, urough〉 ≥ 〈v1, ūrough〉 − ‖urough − ūrough‖L2(R)

≥ 2−1/4〈u\, ūrough〉 − ‖v1 − 2−1/4u\‖L2(R) − ‖urough − ūrough‖L2(R).

We calculate

2−1/4〈u\, ūrough〉 =
2

21/4
√
π

∫ 1

−1

cos(πx/2) dx =
8

21/4π3/2
,

so that, by (F.43) and (F.56), we have for Trough ≥ 4 and |ν\ − ν̂| ≤ 1
256 that

〈v1, urough〉 ≥
1

4
. (F.57)

Moreover, it allows us to control the unnormalized distance between the power method output and the target in terms of the
normalized distance: the triangle inequality gives∥∥∥u\ −√λ1v1∥∥∥

L2(R)
≤ max

{
‖u\‖L2(R),

√
λ1

}∥∥∥∥ u\
‖u\‖L2

− v1

∥∥∥∥
L2(R)

+ |‖u\‖L2(R) −
√
λ1|

≤ 14
(
21/4 + 23/8|ν\ − ν̂|1/4

)√
|ν\ − ν̂|+ |‖u\‖L2(R) −

√
λ1|,

where the second line applies (F.53). Meanwhile, (F.54) and (F.53) imply

21/4
(√

1− 2|ν\ − ν̂|1/2 − 1

)
≤
√
λ1 − 21/4 ≤ 21/4

(√
1 + 2|ν\ − ν̂|1/2 − 1

)
,

and given that 2|ν\− ν̂|1/2 ≤ 1
8 by our assumptions, the inequalities

√
1 + x ≤ 1+x/2 and

√
1− x ≥ 1−x (the latter valid

if 0 ≤ x ≤ 1) lead to the bounds

−25/4|ν\ − ν̂|1/2 ≤
√
λ1 − 21/4 ≤ 25/4|ν\ − ν̂|1/2,
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so, plugging into the previous estimate, we obtain∥∥∥u\ −√λ1v1∥∥∥
L2(R)

≤ 30
√
|ν\ − ν̂| (F.58)

after worst-casing constants. We can finally apply Lemma F.6 with the properties (F.55) and (F.57) together with the triangle
inequality and (F.58) to obtain that the iteration (F.42) satisfies

‖û− u\‖L2(R) ≤ 30
√

|ν\ − ν̂|+ 28

(
8

3
|ν\ − ν̂|1/4

)Tu

after worst-casing constants slightly.

Concluding the result. Finally, we instantiate our results above with appropriate parameter choices to obtain the desired
conclusion. We have shown the following: there are absolute constants c1, C1, C2 > 0 such that for any parameters σ, β
satisfying

σ2 ≤ 1
104 ,

β ≤ c1,

for any 0 < ε ≤ 1
768 , if the iteration counts satisfy

Trough ≥ −C1 log(σ2ε),

Tν ≥ −C2 log(3ε)
β

,

Tu ≥ 16,

then with probability over the random initialization of ν0 at least 4/7, one has

|ν̂ − ν\| ≤ 3ε,

‖û− u\‖L2(R) ≤ 31
√
ε.

The condition on Tu is quite mild because the rate of convergence improves with the quality of the output of the alignment
stage of the algorithm, since the target u\u∗\ is rank one. The condition on Tν above takes advantage of the fact that when
0 ≤ x ≤ 1

2 , we have by concavity log(1− x) ≥ (−2 log 2)x to simplify the stated bound in our previous work.

Remark F.2. Theorem F.2 establishes a linear rate of convergence of both the alignment iterates νk and the representation
iterations that generate urough and û to the true parameters of the template, up to symmetry. The dependence on the other
problem parameters in these rates, namely the smoothing σ2 and the step size β, is about as mild as one would hope for:
the smoothing level σ2 only enters the rates logarithmically, and the step size is only required to be smaller than an absolute
constant, which is reflected as a linear dependence in the rate of convergence of the alignment step of the algorithm. The issue
of smoothing represents an interesting conceptual takeaway from our analysis, with regards to modern 3D representation
approaches like TILTED which do not explicitly incorporate a classical coarse-to-fine smoothing schedule, as in, for example,
image registration [9]. Our proofs demonstrate that the reason smoothing is not necessary for precise local convergence is
that computational constraints on the representation capacity of the method (here, a rank-one matrix) and the L2 loss create
texture gradients (i.e., blurry images) when optimizing the representation, and these texture gradients cause the subsequent
alignment landscape to be smoother than one might otherwise expect. For example, when σ2 is small, the smoothed template
ϕσ2 ∗X\ has a Lipschitz constant on the order of 1/σ, due to sharp edges in X\; nevertheless, this sharpness does not reflect
in our rates as a consequence of the blessings of capacity-constrained inexact representation.

Theorem F.2 contains a hypothesis on the probability of success, which is asserted to be at least 4
7 ; since this value is

larger than 1
2 , it is theoretically possible to boost the success probability to an arbitrarily-high level by running multiple

independent trials of the algorithm and aggregating the outputs appropriately. In practice, of course, the algorithm succeeds
with probability one on the template X\: the discrepancy is due to the technical need to prove that the nonconvex alignment
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landscape ν 7→ Lσ(ν, urough) has suitable negative curvature in neighborhoods of the maximizers (ν\ +
π
4 ) +

π
2Z. This

“benign global geometry”, in the sense of Zhang et al. [22], has been studied in other contexts [18, 20, 29], although the
mixture of discrete and continuous symmetries in the (ν, u) landscape of (F.34) is somewhat distinguished. In general, we
have endeavored to keep the optimization analysis in Theorem F.2 as elementary as possible, and we have not made attempts
to optimize absolute constants. Simple and standard modifications to the proofs can be made to yield slightly better constants
and rates, at the cost of additional technicality [10, 18, 22].
Remark F.3. We discuss three directions of extension for Theorem F.2 below.

1. Joint factorization and alignment. The algorithm we study, in its use of the power method as a standin for matrix
factorization as in (F.34) as well as its use of “block” alternating minimization iterations rather than alternating gradient
steps on ν and u, differs from our implementation of TILTED in ways that present important directions for further
technical improvement. It seems to us that extending our analysis to the case of alternating gradient steps would require
some additional conceptual insight (e.g., the identification of a conserved quantity): various technical components of
the current alignment argument are delicate and break when the factorization target is not constant. A similar issue is
associated with the extension of the result to ν\ 6= π/4, although this case seems “easier”; e.g., perturbative analogues of
Lemma F.1 for other values of ν\ would suffice here. In the alternating (ν, u) setting, there is also a challenge associated
with the fact that texture gradients induced by inexact factorization become smaller as the alignment becomes more
accurate, making the landscape nonsmooth. Rather than introducing auxiliary smoothing in this setting, it may be most
relevant to practice to study the nonsmooth landscape directly, à la [19]; the analysis can be less technical in our setting
since there is no statistical component to the problem. Extending the loss (F.34) to the setting of overparameterized
matrix factorization is also interesting; developing this extension in the context of observations X\ with background
clutter, as discussed below, may be the most natural setting.

2. Extensions to multi-object scenes and three dimensions. Establishing a direct 3D analogue of Theorem F.2 seems to
be mostly technical. Extending the result to apply to scenes X\ with other objects and background clutter present seems
more challenging: the proof of Theorem F.2 presents a perturbative framework for analyzing TILTED that should not be
hard to extend to ‘perturbed’ observations X\ when the magnitude of the perturbation is small, but getting insights into
how the algorithm can be changed to cope with the kinds of structured perturbations that arise in real-world scenes (e.g.,
a scene with objects with shape content that cannot be axis-aligned as well as the square, like people, but that nonetheless
contains enough ‘prominent’ axis-alignable components, such as buildings and roads in a built environment, for success to
be possible) seems to require novel ideas. One path forward here could be to introduce additional appearance components
to the square X\, such as a texture, and study conditions under which these are sufficiently decorrelated with the shape
components of the template for success to remain possible. Another possibility is to study the overparameterized case
and separate distinct factorization components into “groups”, as in our implementation of TILTED, which have their own
transformations and can thus represent distinct parts of the scene; the necessary symmetry-breaking aspects of such a
result feel reminiscent of analyses of dictionary learning [22], but feel significantly more challenging due to the need to
localize different objects via factorization in the setting of TILTED.

3. Computing with a MLP. An extremely important avenue for extension of Theorem F.2 is to go beyond the linear repre-
sentation studied there and introduce a neural network for representing the scene. This presents an additional challenge
with respect to disentangling appearance and shape versus our current analysis: there, the rank-one capacity constraint
on the factorization leads to inexact intermediate factorizations that create texture gradients to help alignment, and align-
ment improvements help to further improve the representation. With a MLP, there seems to be some natural capacity to
represent coordinate rotations (c.f. Section F.4)—understanding how initialization and implicit bias of gradient descent
training preserves the disentangled learning of appearance and alignment that we prove occurs in the linear model is a
fascinating direction for future work.

F.2.1 Supporting Results

Lemma F.6. Let T : L2(R) → L2(R) be a nonzero self-adjoint Hilbert-Schmidt operator with corresponding eigenvalues
(λk)k∈N and orthonormal basis (vk)k∈N ⊂ L2(R). Without loss of generality, suppose that ‖T ‖ = |λ1| > 0. Suppose
moreover that λ1 > 0,4 and that the spectrum has a gap, i.e., that for some 0 < γ ≤ 1 we have λ1−|λk| ≥ γλ1 for all k > 1.

4If λ1 < 0, it is necessary to take absolute values in order to obtain the result asserted here: consider for example the case where T = − Id, so that
uk = (−1)ku0 if ‖u0‖L2(R) = 1.
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Consider power method on T , starting from initialization u0 ∈ L2(R):

uk+1 =
T uk

‖T uk‖L2(R)
.

Then if |〈v1, u0〉L2(R)| ≥ η > 0, it holds

∥∥uk − sign(〈v1, u0〉L2(R))v1
∥∥2
L2(R) ≤ 2(1− γ)2k

‖u0‖2L2(R)

η2
.

In addition, if the iteration count satisfies

k ≥
log(η/4‖u0‖L2(R))

log(1− γ)
,

then the ‘rank-one approximating factor’ error satisfies∥∥∥√u∗kT ukuk −
√
λ1 sign(〈v1, u0〉L2(R))v1

∥∥∥2
L2(R)

≤ 18λ1(1− γ)2k
‖u0‖2L2(R)

η2
.

Proof. We apply the standard argument; under the assumption of a Hilbert-Schmidt operator with a gapped spectrum, as we
have made here, the standard argument’s convergence is actually dimension-free, in contrast to the general case (c.f. [6]). We
use basic notions from the analysis of self-adjoint Hilbert-Schmidt operators in the proof (see [11, §B]).

The main observation to make is that the update equation for uk+1 in the definition of the power method is a 0-absolutely-
homogeneous function of uk. This implies

uk =
T ku0

‖T ku0‖L2(R)
.

It is clear that this iteration is well-defined, i.e., that for every k one has T ku0 6= 0, by the assumption that |〈v1, u0〉| > 0 (and
the fact that |λ1| > 0), since, as we will use below,

T ku0 =

∞∑
l=1

λkl 〈vl, u0〉L2(R)vl,

∥∥T ku0
∥∥2
L2(R) =

∞∑
l=1

λ2kl |〈vl, u0〉L2(R)|2,

since the sequence (vl) is an orthonormal basis. Moreover, notice that if we initialize the power method with −u0 instead of
u0, we end up only changing the sign of the output uk; hence we can assume below without loss of generality that 〈v1, u0〉 > 0.
Now, expanding the square shows that

‖uk − v1‖2L2 =

∥∥∥∥∥ T ku0
‖T ku0‖L2(R)

− v1

∥∥∥∥∥
2

L2

= 2

(
1−

λk1〈v1, u0〉L2(R)

‖T ku0‖L2(R)

)
.

Since λ1 > 0, we have

‖T ku0‖L2(R)

λk1〈v1, u0〉L2(R)
=

(
1

λ2k1 〈v1, u0〉2L2(R)

∞∑
l=1

λ2kl |〈vl, u0〉L2(R)|2
)1/2

=

(
1 +

∞∑
l=2

(
|λl|
|λ1|

)2k 〈vl, u0〉2L2(R)

〈v1, u0〉2L2(R)

)1/2

.

The gapped assumption implies that
|λl|
|λ1|

≤ 1− γ,
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and the lower bound 〈v1, u0〉2L2(R) ≥ η2 then implies

‖T ku0‖L2(R)

λk1〈v1, u0〉L2(R)
≤

(
1 + (1− γ)2k

‖u0‖2L2(R)

η2

)1/2

.

For x ≥ 0, the function x 7→ 1− (1 + x)−1/2 is increasing and concave, and therefore satisfies 1− (1 + x)−1/2 ≤ 1
2x. As a

result, we have

‖uk − v1‖2L2 ≤ 2(1− γ)2k
‖u0‖2L2(R)

η2
,

as claimed.
To obtain the claimed estimate for the rank-one approximating factor error, we use the triangle inequality and a bound for

the square root when its argument is sufficiently far from 0. Notice that
√
λ1 =

√
v∗1T v1, and by the triangle inequality

|u∗kT uk − λ1| ≤ |u∗kT uk − u∗kT v1|+ |u∗kT v1 − v∗1T v1|
≤ 2‖T ‖‖uk − v1‖L2(R)

= 2λ1‖uk − v1‖L2(R). (F.59)

by the Schwarz inequality and the fact that uk and v1 are unit norm. This implies

u∗kT uk ≥ λ1
(
1− 2‖uk − v1‖L2(R)

)
.

As a result, if

k ≥
log(η/4‖u0‖L2(R))

log(1− γ)
,

we have u∗kT uk > 0, and square roots can be taken without worry. We have by the triangle inequality∥∥∥√u∗kT ukuk −
√
λ1v1

∥∥∥
L2(R)

≤
∥∥∥√u∗kT ukuk −

√
v∗1T v1uk

∥∥∥
L2(R)

+
∥∥∥√v∗1T v1uk −

√
v∗1T v1v1

∥∥∥
L2(R)

≤
∣∣∣√u∗kT uk −

√
v∗1T v1

∣∣∣+√λ1‖uk − v1‖L2(R),

since uk and v1 are unit norm. Now, by the fundamental theorem of calculus, we have for any x, y ≥ 0

∣∣√x−√
y
∣∣ = 1

2

∣∣∣∣∫ x

y

z−1/2 dz
∣∣∣∣ ≤ |x− y|

2
√

min{x, y}
,

and in our setting, we have shown above

u∗kT uk ≥
(
1− 1√

2

)
λ1

by our choice of k. Since 2(1− 1/
√
2)1/2 ≥ 1, it follows∣∣∣√u∗kT uk −

√
v∗1T v1

∣∣∣ ≤ 1√
λ1

|u∗kT uk − v∗1T v1|

≤ 2
√
λ1‖uk − v1‖L2(R).

where we used (F.59) in the final line. Consequently, we have shown∥∥∥√u∗kT ukuk −
√
λ1v1

∥∥∥
L2(R)

≤ 3
√
λ1‖uk − v1‖L2(R),

as claimed.
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Lemma F.7. For the objective Lσ defined in (F.32), one has

∇νLσ(ν,U ,V ) = −
〈
ϕσ2 ∗

(
UV ∗ ◦ τν\−ν

)
,

〈
∇x[ϕσ2 ∗X\],

[
0 −1
1 0

]
( · )
〉

`2

〉
L2(R2)

,

∇ULσ(ν,U ,V ) = −
[
ϕ2σ2 ∗

(
X\ ◦ τν−ν\

−UV ∗)]V
∇V Lσ(ν,U ,V ) = −

[
ϕ2σ2 ∗

(
X\ ◦ τν\−ν − V U∗)]U .

Proof. For the gradients of Lσ with respect to (U ,V ), direct calculation using the chain rule for the Fréchet derivative and
the duality of L2(R) gives

∇ULσ(ν,U ,V ) = −
[
ϕ2σ2 ∗

(
X\ ◦ τν−ν\

−UV ∗)]V
∇V Lσ(ν,U ,V ) = −

[
ϕ2σ2 ∗

(
X\ ◦ τν−ν\

−UV ∗)]∗ U .
It is convenient to simplify the adjoint operation in the second expression. First, note that f 7→ [ϕ2σ2 ∗(X\◦τν−ν\

−UV ∗)][f ]
is a bounded operator on L2(R), because its L2 → L2 operator norm is bounded by its Hilbert-Schmidt norm, which is finite:∥∥ϕ2σ2 ∗ (X\ ◦ τν−ν\

−UV ∗)
∥∥2

HS =

∫
R2

[ϕ2σ2 ∗ (X\ ◦ τν−ν\
−UV ∗)](s, t)2 ds dt < +∞,

by Young’s inequality for convolutions. This allows us to use Fubini’s theorem freely in the sequel. For any f, g ∈ L2(R),
we have〈[
ϕ2σ2 ∗

(
X\ ◦ τν−ν\

−UV ∗)] [f ], g〉
L2(R) =

∫
R
g(s)

(∫
R

[
ϕ2σ2 ∗ (X\ ◦ τν−ν\

−UV ∗)
]
(s, t)f(t) dt

)
ds

=

∫
R

∫
R

∫
R2

f(t)g(s)ϕ2σ2((s, t)− x)(X\ ◦ τν−ν\
−UV ∗)(x) dx dt ds

=

∫
R

∫
R

∫
R2

f(t)g(s)ϕ2σ2((t, s)− x)(X\ ◦ τν−ν\
−UV ∗)

([
1 0
0 1

]
x

)
dx dt ds,

(F.60)

where the third equality uses a unitary change of variables x 7→
[
0 1
1 0

]
x in the convolution integral. Notice that

(X\ ◦ τν−ν\
−UV ∗)(s, t) = X\ ◦ τν−ν\

(s, t)−
k∑

i=1

ui(s)vi(t)

= X\

(
Rν−ν\

[
0 1
1 0

]
(t, s)

)
−

k∑
i=1

vi(t)ui(s).

Moreover, ifQ is any orthogonal matrix with determinant−1, then for any ν one has det(RνQ) = −1; because the orthogonal
matrices form a Lie group and every 2× 2 orthogonal matrix with determinant −1 is symmetric, it follows

RνQ = QR∗
ν . (F.61)

In particular,

Rν−ν\

[
0 1
1 0

]
=

[
0 1
1 0

]
R∗

ν−ν\
,

which, together with the fact that X\(s, t) = X\(t, s), implies that

(X\ ◦ τν−ν\
−UV ∗)(s, t) = (X\ ◦ τν\−ν − V U∗)(t, s).

Applying this to (F.60) and unwinding the preceding steps implies immediately〈[
ϕ2σ2 ∗

(
X\ ◦ τν−ν\

−UV ∗)] [f ], g〉
L2(R) =

〈[
ϕ2σ2 ∗

(
X\ ◦ τν\−ν − V U∗)] [g], f〉

L2(R),
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which implies the claimed expression for the gradients with respect toV . The gradient with respect to ν is a similar calculation
with the chain rule, but involves some simplifications so we reproduce it here. From the chain rule, for any ∆ν ∈ R we have
for the differential

dν [Lσ( · ,U ,V )](∆ν) =

〈
ϕσ2 ∗

(
X\ ◦ τν−ν\

−UV ∗) , ∂
∂t

∣∣∣∣
t=0

[X\ ◦ τν+t∆ν−ν\
]

〉
L2(R2)

=
〈
ϕσ2 ∗

(
X\ ◦ τν−ν\

−UV ∗) ,〈∇x[ϕσ2 ∗X\] ◦ τν−ν\
, Ṙν−ν\

( · )
〉
`2

〉
L2(R2)

∆ν, (F.62)

where Ṙν is the elementwise derivative of the expression in (F.2) for Rν , which evaluates as

Ṙν =

[
− sin ν − cos ν
cos ν − sin ν

]
=

[
cos ν − sin ν
sin ν cos ν

] [
0 −1
1 0

]
= Rν

[
0 −1
1 0

]
.

Note that the expression in the `2 inner product in (F.62) is a function of x ∈ R2. In particular, the function

x 7→
〈
R∗

ν−ν\
∇x[ϕσ2 ∗X\] ◦ τν−ν\

(x),

[
0 −1
1 0

]
x

〉
`2

gives the rotational component (tangential to the co-incident circle centered at the origin) of the rotated gradient vector field
of ϕσ2 ∗X\ at the point x. This gives the expression

∇νLσ(ν,U ,V ) =

〈
ϕσ2 ∗

(
X\ ◦ τν−ν\

−UV ∗) ,〈R∗
ν−ν\

∇x[ϕσ2 ∗X\] ◦ τν−ν\
,

[
0 −1
1 0

]
( · )
〉

`2

〉
L2(R2)

.

Using the commutation relationship (F.31) and a unitary change of variables x 7→ τν\−ν(x), the previous expression implies

∇νLσ(ν,U ,V ) =

〈
ϕσ2 ∗

(
X\ −UV ∗ ◦ τν\−ν

)
,

〈
∇x[ϕσ2 ∗X\],

[
0 −1
1 0

]
( · )
〉

`2

〉
L2(R2)

.

As in Lemma F.8, let C(x) denote the function of x encompassed by the `2 inner product. By Lemma F.8, we have that
C(s, t) = −C(t, s), whereas by (F.31) we have that (ϕσ2 ∗X\)(s, t) = (ϕσ2 ∗X\)(t, s). It follows that these two functions
are orthogonal over L2(R2), so that in particular

∇νLσ(ν,U ,V ) = −
〈
ϕσ2 ∗

(
UV ∗ ◦ τν\−ν

)
,

〈
∇x[ϕσ2 ∗X\],

[
0 −1
1 0

]
( · )
〉

`2

〉
L2(R2)

,

as claimed.

Lemma F.8. Let
C(x) =

〈
∇x[ϕσ2 ∗X\](x),

[
0 −1
1 0

]
x

〉
`2

denote the rotational component of the gradient vector field of the smoothed template. Let Q ∈ O(2) satisfy det(Q) = −1,
and suppose that Q is a symmetry of the square template X\: in particular

Q ∈
{[

1 0
0 −1

]
,

[
−1 0
0 1

]
,

[
0 1
1 0

]
,

[
0 −1
−1 0

]}
(F.63)

(this is the subgroup of D4 consisting of symmetries of determinant −1). Then one has

C(Qx) = −C(x).
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Proof. With (F.2), we can write
C(x) =

〈
∇x[ϕσ2 ∗X\](x),Rπ/2x

〉
`2
.

For Q as in (F.63) and using (F.61), we have

C(Qx) =
〈
∇x[ϕσ2 ∗X\](Qx),QR−π/2x

〉
`2

= −
〈
∇x[ϕσ2 ∗X\](Qx),QRπ/2x

〉
`2

= −
〈
Q∇x[ϕσ2 ∗X\](Qx),Rπ/2x

〉
`2
. (F.64)

The second line uses (F.2), and the third uses that every member of (F.63) is symmetric. By Young’s inequality, we have

∇x[ϕσ2 ∗X\] = ∇x[ϕσ2 ] ∗X\,

and because ϕσ2 is invariant to all orthogonal matrices, its gradient is equivariant with respect to O(2), so in particular

(Q∇x[ϕσ2 ] ∗X\)(Qx) =

∫
R2

X\(x
′)Q∇x[ϕσ2 ](Qx− x′) dx′

=

∫
R2

X\(x
′)∇x[ϕσ2 ](x−Qx′) dx′

=

∫
R2

X\(Qx′)∇x[ϕσ2 ](x− x′) dx′

=

∫
R2

X\(x
′)∇x[ϕσ2 ](x− x′) dx′

= (∇x[ϕσ2 ] ∗X\)(x).

Above, the third line uses an orthogonal change of variables in the convolution integral, and the fourth uses that Q is a
symmetry of X\. By (F.64), we have that C(Qx) = −C(x).

Lemma F.9. The following symmetry properties hold:

1. For any u ∈ L2(R), σ > 0, the objective ν 7→ Lσ(ν, u) is π/2-periodic;

2. For any u ∈ L2(R), σ > 0, and −π/4 ≤ ν − ν\ ≤ π/4, one has Lσ(ν − ν\, u) = Lσ(ν\ − ν, u).

Moreover, consider the alignment gradient at the nominal rough initial representation:

ν 7→ ∇νLσ(ν, ūrough).

where the nominal rough initial representation is defined as

ūrough(s) =
2√
π
1|s|≤1 cos(πs/2).

Suppose that α = 1√
2
. Then for any ν,

|∇νLσ(ν, ūrough)| ≤ 256|sin(ν − ν\)|.

If, in addition, σ ≤ 10−3, then if ν is sufficiently far from maximizers, i.e., if∣∣∣(ν − ν\ +
π

4
mod

π

2

)
− π

4

∣∣∣ ≤ π

7
, (F.65)

one has

sign
((
ν − ν\ +

π

4
mod

π

2

)
− π

4

)
· ∇νLσ(ν, ūrough) ≥ c0 sin

(∣∣∣(ν − ν\ +
π

4
mod

π

2

)
− π

4

∣∣∣)
for an absolute constant c0 > 0. In particular, the gradient is nonnegative when ν − ν\ mod π/2 ≤ π/7, and nonpositive
when ν − ν\ mod π/2 ≥ π/2− π/7.
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Proof. The proof exploits heavily the D4 symmetries of the square template X\ (c.f. Lemma F.8) and of the initialization
ūroughū

∗
rough. Before proceeding with the analysis of the gradient, we go through some simplifying reductions based on sym-

metry. First, by the definition of the loss in (F.34), it suffices to analyze the case where ν\ = 0, and perform the substitution
ν 7→ ν − ν\ in all results obtained. Next, notice that because Rν+π/2 = Rπ/2Rν for any ν (following the notation of (F.2)),
one has X\(Rν+π/2x) = X\(Rνx) for any x by symmetry, which implies (c.f. (F.34)) that Lσ(ν + π/2, u) = Lσ(ν, u) for
any ν, u. Moreover, by (F.61), one has R−ν = QRνQ, where

Q =

[
0 1
1 0

]
.

We have that Q is an orthogonal matrix with determinant −1; writing τQ : R2 → R2 for its induced transformation, we
have again by symmetry that X\ ◦ τπ/2−ν(x) = X\ ◦ τν ◦ τQ. Applying then (F.31) (notice that the calculation does not use
the fact that det(Rν) = 1, and in fact any orthogonal matrix yields the same conclusion) together with a unitary change of
coordinates, we obtain that

Lσ(π/2− ν, ūrough) =
1

2

∥∥ϕσ2 ∗
(
X\ ◦ τν − ūroughū

∗
rough ◦ τQ

)∥∥2
L2 ,

since Q∗ = Q. But since τQ(s, t) = (t, s), it follows from symmetry that Lσ(π/2 − ν, ūrough) = Lσ(ν, ūrough). We have
thus shown that ν 7→ Lσ(ν, ūrough) is

1. π/2-periodic;

2. on [0, π/2], symmetric about π/4.

It therefore suffices to assume that 0 ≤ ν ≤ π/4 in the sequel, since conclusions on this interval can be translated to all ν ∈ R
as stated in the statement of the result by these symmetry properties.

We proceed to estimate the gradient

∇νLσ(ν, ūrough) = −

〈
ϕσ2 ∗

(
ūroughū

∗
rough ◦ τ−ν

)︸ ︷︷ ︸
R

, C

〉
L2(R2)

under the preceding assumptions, where C is defined as in Lemma F.8. First, we reduce the L2 integral in the expression
for a gradient into a difference of integrals over a ‘fundamental domain’ depending on the D4 symmetries of X\ and the
initialization; this expression will be useful for upper and lower bounds. Then, we will establish the lower bound, which is
more technical, before concluding with the upper bound. For (κ, π) ∈ {−1, 1}2×P(2), where P(2) is the set of permutations
on 2 elements, we consider the “wedge” domains

Cκ,π =
{
x = (s, t) ∈ R2

∣∣ κ1s ≥ 0, κ2t ≥ 0, π1(s, κ1κ2t) ≥ π2(s, κ1κ2t)
}
.

Intuitively, in the third constraint, π governs the “direction” of the inequality, and κ1κ2 selects the proper subspace to reflect
about. One notes that∪(κ,π)∈{−1,1}2×P(2)Cκ,π = R2, and if (κ, π) 6= (κ′, π′) thenCκ,π∩Cκ′,π′ has zero Lebesgue measure.
Because C and R are smooth functions, it follows

∇νLσ(ν, ūrough) = −

〈
R

 ∑
(κ,π)∈{−1,1}2×P(2)

1Cκ,π

 , C

〉
L2

=
∑

(κ,π)∈{−1,1}2×P(2)

−
〈
R1Cκ,π , C

〉
L2 .

Recall, following (F.31), that we can freely interchange the order of gaussian smoothing and rotation in the expression for
Lσ(ν, ūrough). Since ūrough(s) = ūrough(−s) for any s ∈ R, by the argument above applied to X\ we have that for any ν

R ◦ τ±π/2 =
(
ϕσ2 ∗

(
ūroughū

∗
rough ◦ τ−ν

))
◦ τ±π/2

= ϕσ2 ∗
(
ūroughū

∗
rough ◦ τ±π/2 ◦ τ−ν

)
= ϕσ2 ∗

(
ūroughū

∗
rough ◦ τ−ν

)
= R.
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Meanwhile, we note that

Rπ/2 =

[
0 −1
1 0

]
=

[
0 1
1 0

] [
1 0
0 −1

]
; R−π/2 =

[
0 1
−1 0

]
=

[
0 1
1 0

] [
−1 0
0 1

]
,

so by Lemma F.8, C ◦ τ±π/2 = C. Thus, changing coordinates in the L2 integral, we get

∇νLσ(ν, ūrough) = −4
〈
R
(
1C{1,−1},Id + 1C{1,1},Id

)
, C
〉
L2
,

where we recall

C{1,−1},Id =
{
x = (s, t) ∈ R2

∣∣ s ≥ 0, t ≤ 0, s ≥ −t
}
, C{1,1},Id =

{
x = (s, t) ∈ R2

∣∣ s ≥ 0, t ≥ 0, s ≥ t
}
. (F.66)

By another change of coordinates and Lemma F.8, we then have in addition

∇νLσ(ν, ūrough) ≥ −4

∫
{0≤t≤s}

(R(s, t)−R(s,−t)) C(s, t) ds dt (F.67)

Next, we control R(s, t) − R(s,−t) using the geometry of the rough factorization ūroughū
∗
rough; we will then conclude the

bound from (F.67). First, by linearity and (F.31), we have

R(s, t)−R(s,−t) = ϕσ2 ∗
(
ūroughū

∗
rough ◦ τ−ν

)
(s, t)− ϕσ2 ∗

(
ūroughū

∗
rough ◦ τ−ν

)
(s,−t)

= ϕσ2 ∗
(
ūroughū

∗
rough ◦ τ−ν − ūroughū

∗
rough ◦ τ−ν ◦ τQ

)
(s, t), (F.68)

where Q is the matrix representation of the orthogonal transformation (s, t) 7→ (s,−t). Gaussian smoothing is nonnegativity-
preserving, so developing a lower bound on the difference R(s, t) −R(s,−t) can be done by developing a lower bound on
the parenthesized term above. By (F.61) and symmetry, we have

ūroughū
∗
rough ◦ τ−ν ◦ τQ = ūroughū

∗
rough ◦ τν . (F.69)

Applying the first conclusion in Lemma F.12 together with Lemma F.11, it follows that

−(R(s, t)−R(s,−t))C(s, t) ≥ 0

for every 0 ≤ t ≤ s.This means that we can obtain a lower bound for the RHS of (F.67) by integrating over a subset of the
domain {0 ≤ t ≤ s}. When σ is small, the field C concentrates around the boundary of the square template X\; we will
therefore obtain a lower bound for the gradient by integrating in a small strip around this region. To this end, the second
conclusion in Lemma F.12 gives the following quantitative bound, valid for 0 ≤ t ≤ s ≤ 1 and all 0 ≤ ν ≤ π/7:

ūroughū
∗
rough ◦ τν(x)− ūroughū

∗
rough ◦ τ−ν(x) ≥

7 sin ν
1000

1
−0.137≤t− 1√

2
≤−0.127

1
−0.001≤s− 1√

2
≤0.001

.

Since we are considering a regime with σ small, it is now reasonable to simplify this estimate further by worst-casing the
smoothing that connects it to R. Because this indicator is a box in the (s, t) plane, its smoothed version is a product of
smoothed indicators for compact connected intervals in R. If I = [−a, a] is such an interval (because convolution commutes
with translations, it will be sufficient to consider such a centered interval), we have (see the derivative calculations at the start
of the proof of Lemma F.13) that ϕσ2 ∗ 1I(x) is decreasing (resp. increasing) for x ≥ 0 (resp. x ≤ 0). Hence the minimum
value taken by ϕσ2 ∗ 1I among those x ∈ I is attained at x ∈ {±a}, where

1I ∗ ϕσ2(a) =

∫ a

−a

ϕσ2(x− a) dx =

∫ 2a

0

ϕσ2(x) dx

=
1

2
−
∫ ∞

2a

ϕσ2(x) dx

≥ 1

2
− σ

2a
√
2π
e−2a2/σ2

,
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by the standard estimate for the gaussian tail integral. Thus, as soon as σ ≤ 2a, one has

1I ∗ ϕσ2(a) ≥ 1

4
, (F.70)

which shows that 1I ∗ ϕσ2 ≥ 1
41I if σ ≤ 2a. Applying this to our lower bound, it follows that if σ ≤ 1

500 , we have

− (R(s, t)−R(s,−t)) ≥ 7 sin ν
16000

1
−0.137≤t− 1√

2
≤−0.127

1
−0.001≤s− 1√

2
≤0.001

.

Plugging this bound into (F.67) gives

∇νLσ(ν, ūrough) ≥
7 sin ν
4000

∫∫
−0.001≤s−1/

√
2≤0.001,

−0.137≤t−1/
√
2≤−0.127

C(s, t) ds dt. (F.71)

The remainder of the proof is a relatively tedious calculation over this domain of integration. We make use of the expressions
for C derived in Lemma F.11:

C(s, t) = sf(s)f ′(t)− tf(t)f ′(s), where

f(x) =
1√
2πσ2

∫ 1/
√
2

−1/
√
2

e
−

(x−x′)2

2σ2 dx′, x ∈ R;

f ′(x) = ϕσ2(x+ α)− ϕσ2(x− α).

Moreover, we recall that f ′(x) ≥ 0 if x ≥ 0 and f ′(x) ≤ 0 if x ≤ 0, as shown in the proof of Lemma F.11. We have
|sf(s)| ≤ 1 when s ≤ 1 by Young’s convolution inequality, and

f ′(t) ≥ −ϕσ2(t− 1/
√
2)

≥ −ϕσ2(−0.127)

≥ − 1

σ
√
2π
e
− 1

128σ2

for t in the region of integration. Similarly, for t in the region of integration

tf(t) ≥
(

1√
2
− 0.137

)
f(1/

√
2− 0.127)

≥ 1

4

(
1√
2
− 0.137

)
,

where the last line uses (F.70). Finally, we have for s in the domain of integration

f ′(s) = ϕσ2(s− 1/
√
2)− ϕσ2(s+ 1/

√
2)

≥ ϕσ2(s− 1/
√
2)− ϕσ2(

√
2− 0.001)

≥ ϕσ2(s− 1/
√
2)− 1

σ
√
2π
e
− 1

2σ2
.

Combining these, we have the lower bound (valid on the domain of integration of our gradient lower bound)

C(s, t) ≥ 1

4

(
1√
2
− 0.137

)(
ϕσ2(s− 1/

√
2)− 1

σ
√
2π
e
− 1

2σ2

)
− 1

σ
√
2π
e
− 1

128σ2

≥ 1

8
ϕσ2(s− 1/

√
2)− 1

σ
√
π
e
− 1

128σ2
.
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Integrating the first term in this lower bound over the s region gives, by a change of coordinates,∫ 0.001+1/
√
2

−0.001+1/
√
2

ϕσ2(s− 1/
√
2) ds =

∫ 0.001

−0.001

ϕσ2(s) ds

= 1− 2

∫ 0.001

0

ϕσ2(s) ds

≥ 1− 2
σ

10−3
√
2π
e−10−6/2σ2

,

using also the gaussian tail estimate we applied above. Thus, as soon as σ ≤ 10−3, we have∫ 0.001+1/
√
2

−0.001+1/
√
2

ϕσ2(s− 1/
√
2) ds ≥ 1

2
,

and under this constraint on σ, we have moreover from our previous lower bound∫ 0.001+1/
√
2

−0.001+1/
√
2

C(s, t) ds ≥ 1

20
.

Integrating over the region of t adds only an additional constant multiple, since this expression does not depend on t. Conse-
quently, these calculations together with (F.71) imply the claimed lower bound.

We can obtain the claimed upper bound in a similar way. Since the lower bound we have just established characterizes the
sign of the gradient at all points where 0 ≤ ν ≤ π/7 (and similarly for negative ν, by symmetry of the objective), it suffices
to simply control the magnitude of the gradient. By (F.67), (F.69) and (F.68), and L1-L∞ control, we have

|∇νLσ(ν, ūrough)| ≤ 4

(
sup

0≤t≤s

∣∣ϕσ2 ∗
(
ūroughū

∗
rough ◦ τ−ν − ūroughū

∗
rough ◦ τν

)
(s, t)

∣∣)∫
{s≥0,t≥0,s≥t}

|C(s, t)| ds dt

≤ 4

(
sup

0≤t≤s

∣∣ūroughū
∗
rough ◦ τ−ν − ūroughū

∗
rough ◦ τν

∣∣(s, t))∫
{0≤t≤s}

|C(s, t)| ds dt,

where we use Young’s convolution inequality in the second line. By the expressions given above and the triangle inequality,
we have ∫

{0≤t≤s}
|C(s, t)| ds dt ≤

∫
{0≤t≤s}

(|sf(s)f ′(t)|+ |tf(t)f ′(s)|) ds dt

≤ 2

∫
R2

(|sf(s)f ′(t)|) ds dt

= 2

(∫
R
|sf(s)| ds

)(∫
R
|f ′(t)| dt

)
,

where the third line uses Fubini’s theorem. Because f ′ is a difference of two gaussians, the integral of its magnitude is no
larger than 2. Meanwhile, we have by Fubini’s theorem∫

R
|sf(s)| ds =

∫ 1/
√
2

−1/
√
2

∫
R
|s|ϕσ2(s− x) ds dx

=

∫ 1/
√
2

−1/
√
2

∫
R
|s+ x|ϕσ2(s) ds dx

≤
∫ 1/

√
2

−1/
√
2

(|x|+
√
2/π) dx

=
1

2
+

2√
π
.
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Thus ∫
{0≤t≤s}

|C(s, t)| ds dt ≤ 8.

Meanwhile, by definition (see Lemma F.9), ūrough is a
√
π-Lipschitz function of its argument, and is bounded by 2/

√
π; this

means that ūroughū
∗
rough : R2 → R is a 2

√
2-Lipschitz function of its argument with respect to the `2 metric on R2. Recalling

moreover that ūrough is compactly supported on [−1, 1], it follows that for any x = (s, t) at which ūroughū
∗
rough◦τ±ν is nonzero,

we have ∣∣ūroughū
∗
rough ◦ τ−ν(x)− ūroughū

∗
rough ◦ τν(x)

∣∣ ≤ 2
√
2‖τ−ν(x)− τν(x)‖2

≤ 2
√
2‖R−ν −Rν‖‖x‖2

≤ 4‖R−ν −Rν‖.

In the last two lines, we simply pass to the operator norm of the difference of rotation matrices and then use that ‖x‖∞ ≤ 1.
In dimension two, we have the representation

Rν = (cos ν)I + (sin ν)
[
0 −1
1 0

]
,

and each of these matrices (without the prefactors) is orthogonal, hence has unit operator norm. Thus, the triangle inequality
gives

‖R−ν −Rν‖ ≤ 2|sin ν|.

since sin and cos are both 1-Lipschitz. Combining, this shows

|∇νLσ(ν, ūrough)| ≤ 256 sin ν.

Lemma F.10. Consider the roughly-localized alignment iteration (F.41). Suppose

‖urough − ūrough‖L2(R) ≤
2√
π
,

where the nominal rough initial representation ūrough is defined as in Lemma F.9. For any σ ≤ 1
100 and α = 1√

2
, the following

holds:

1. The functions ∇νLσ( · , urough) and ∇νLσ( · , ūrough) satisfy

‖∇νLσ( · , ūrough)‖Lip ≤ 4

πσ2
,

‖∇νLσ( · , urough)‖Lip ≤ 4

σ2

(
1

π
+

2‖urough − ūrough‖L2(R)√
π

)
,

where ‖ · ‖Lip denotes the Lipschitz seminorm;

2. We have the gradient estimate

|∇νLσ( · , urough)−∇νLσ( · , ūrough)| ≤
8√
πσ2

‖ūrough − urough‖L2(R),

as well as the squared-gradient estimate∣∣∣(∇νLσ( · , urough))
2 − (∇νLσ( · , ūrough))

2
∣∣∣ ≤ 512

π3/2σ4
‖ūrough − urough‖L2(R).
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Proof. We will prove the first assertion first. We recall from Lemma F.7 that for any ν ∈ R, u ∈ L2(R),

∇νLσ(ν, u) = −
〈
ϕσ2 ∗

(
uu∗ ◦ τν\−ν

)
,
〈
∇x[ϕσ2 ∗X\], τπ/2

〉
`2

〉
L2(R2)

,

and using (F.31) and the fact that f 7→ f ◦ τν is a unitary transformation of L2(R2), we thus have

∇νLσ(ν, u) = −
〈
ϕσ2 ∗ uu∗, Cu\ ◦ τν−ν\

〉
L2(R2)

,

using notation from Lemmas F.8 and F.13 as

Cu(x) =

〈
∇x[ϕσ2 ∗ uu∗](x),

[
0 −1
1 0

]
x

〉
`2
.

It then follows that

∇2
νLσ(ν, u) = −

〈
ϕσ2 ∗ uu∗,

〈
R∗

ν−ν\
∇xCu\ ◦ τν−ν\

, τπ/2

〉
`2

〉
L2(R2)

= −
〈
ϕσ2 ∗

(
uu∗ ◦ τν\−ν

)
,
〈
∇xCu\ , τπ/2

〉
`2

〉
L2(R2)

,

calculating as in the proof of Lemma F.7 for the first derivative. We can estimate the RHS with the Schwarz inequality; by
Young’s convolution inequality and the fact that f 7→ f ◦ τ−ν is a unitary transformation of L2(R2), we obtain∥∥ϕσ2 ∗

(
uu∗ ◦ τν\−ν

)∥∥
L2(R2)

≤
∥∥ϕσ2

∥∥
L1(R2)

∥∥uu∗ ◦ τν\−ν

∥∥
L2(R2)

≤ ‖uu∗‖L2(R2)

= ‖u‖2L2(R).

Meanwhile, by the second estimate in Lemma F.14, we have

∥∥〈∇xCu\ , τπ/2
〉
`2

∥∥
L2(R2)

≤
(
3

π
+

55

πσ2
+

4

5πσ4

)1/2

≤ 1

σ2
,

where the worst-casing uses that σ2 ≤ 1
100 . Thus, we have

∣∣∇2
νLσ(ν, u)

∣∣ ≤ ‖u‖2L2(R)

σ2
.

For real numbers x, y, we have
|x2 − y2| ≤ 2max{|x|, |y|}|x− y|,

so by the triangle inequality,∣∣∣‖urough‖2L2(R) − ‖ūrough‖2L2(R)

∣∣∣ ≤ 2max
{
‖urough‖L2(R), ‖ūrough‖L2(R)

}
‖urough − ūrough‖L2(R)

≤ 2
(
‖ūrough‖L2(R) + ‖urough − ūrough‖L2(R)

)
‖urough − ūrough‖L2(R)

≤ 4‖ūrough‖L2(R)‖urough − ūrough‖L2(R),

where the last line requires that ‖urough − ūrough‖L2(R) ≤ ‖ūrough‖L2(R). Since ‖ūrough‖L2(R) = 2/
√
π by Lemma F.1, this,

combined with our previously-derived bound, is equivalent to the assertion.
For the second assertion, we have by the above inequality∣∣∣(∇νLσ( · , urough))

2 − (∇νLσ( · , ūrough))
2
∣∣∣ ≤2max{|∇νLσ( · , urough)|, |∇νLσ( · , ūrough)|, }

× |∇νLσ( · , urough)−∇νLσ( · , ūrough)|,
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so we can bound the sizes of the two factors as well as their absolute difference. Using the expression given in the proof of
the previous assertion for the gradient, we note that for any ν ∈ R

∇νLσ(ν, 0) = 0,

so bounding the sizes of the two factors is accomplished by a bound on their difference. Now, by linearity and the Schwarz
inequality, we have for any any u, v ∈ L2(R) and any ν ∈ R

|∇νLσ(ν, u)−∇νLσ(ν, v)| =
∣∣∣∣〈ϕσ2 ∗

(
(uu∗ − vv∗) ◦ τν\−ν

)
,
〈
∇x[ϕσ2 ∗X\], τπ/2

〉
`2

〉
L2(R2)

∣∣∣∣
≤
∥∥ϕσ2 ∗

(
(uu∗ − vv∗) ◦ τν\−ν

)∥∥
L2(R2)

∥∥∥〈∇x[ϕσ2 ∗X\], τπ/2
〉
`2

∥∥∥
L2(R2)

.

The second factor can be controlled with the second conclusion of Lemma F.13: this gives∥∥∥〈∇x[ϕσ2 ∗X\], τπ/2
〉
`2

∥∥∥
L2(R2)

≤ 1

2σ2

(
1 + σ2

)1/2 ≤ 1

σ2
,

where the last bound worst-cases with our assumption on σ. For the first factor, we use Young’s convolution inequality and
the fact that f 7→ f ◦ τν\−ν is a unitary transformation of L2(R2) to obtain∥∥ϕσ2 ∗ ((uu∗ − vv∗) ◦ τ−ν)

∥∥
L2(R2)

≤
∥∥ϕσ2

∥∥
L1(R2)

∥∥(uu∗ − vv∗) ◦ τν\−ν

∥∥
L2(R2)

≤ ‖uu∗ − vv∗‖L2(R2).

We have

‖uu∗ − vv∗‖L2(R2) =
∣∣∣‖u‖2L2(R) − ‖v‖2L2(R)

∣∣∣
≤ 2max

{
‖u‖L2(R), ‖v‖L2(R)

}∣∣∣‖u‖L2(R) − ‖v‖L2(R)

∣∣∣
≤ 2max

{
‖u‖L2(R), ‖v‖L2(R)

}
‖u− v‖L2(R),

where the two inequalities are both applications of the triangle inequality. Combining these estimates, we have shown

|∇νLσ(ν, u)−∇νLσ(ν, v)| ≤ 2

σ2
max

{
‖urough‖L2(R), ‖ūrough‖L2(R)

}
‖ūrough − urough‖L2(R),

and applying this in the context of our gradient bounds, we obtain∣∣∣(∇νLσ( · , urough))
2 − (∇νLσ( · , ūrough))

2
∣∣∣ ≤ 8

σ4
max

{
‖urough‖3L2(R), ‖ūrough‖3L2(R)

}
‖ūrough − urough‖L2(R)

≤ 64

σ4
‖ūrough‖3L2(R)‖ūrough − urough‖L2(R),

where the final inequality simplifies using the triangle inequality and the assumption ‖urough − ūrough‖L2(R) ≤ ‖ūrough‖L2(R),
as we used before. This is precisely the second assertion.

F.2.2 Technical Lemmas

Lemma F.11. Let u = 1[−α,α] for some α > 0, and for some smoothing level σ > 0 consider the associated curl field

C(x) =
〈
∇x[ϕσ2 ∗ uu∗](x),

[
0 −1
1 0

]
x

〉
`2
.

If σ2 ≤ α2

24 , then for any x = (s, t) with 0 ≤ t ≤ s, one has

C(s, t) ≥ 0.
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Proof. The proof uses expressions obtained in the proof of Lemma F.13. Following (F.79), if we define

f(x) =
1√
2πσ2

∫ α

−α

e−
(x−x′)2

2σ2 dx′, x ∈ R,

then we have
C(s, t) = sf(s)f ′(t)− tf(t)f ′(s).

Moreover, note that f > 0, and by (F.80) one has f ′(x) = 0 only if x = 0. To show the claim, it therefore suffices to show
that

f ′(t)

tf(t)
≥ f ′(s)

sf(s)
, s ≥ t > 0.

Differentiating, this monotonicity condition becomes

s(f ′(s))2 + f(s)f ′(s)− sf ′′(s)f(s) ≥ 0, s > 0. (F.72)

After a change of coordinates, we have

f(s) =
1√
π

∫ α/
√
2σ

−α/
√
2σ

e−(s−
√
2σx)2/2σ2

dx.

Write A = α/
√
2σ, and define

g(s) =

∫ A

−A

e−(s−x)2 dx.

Noting that π−1/2g(s/
√
2σ) = f(s) and inspecting (F.72), we see that it suffices to show that g satisfies the differential

inequality in (F.72). Using the fundamental theorem of calculus, we have

g′(s) = e−(s+A)2 − e−(s−A)2

= −2e−s2−A2

sinh(2sA), (F.73)

and by an additional straightforward differentiation

g′′(s) = 4e−s2−A2

(s sinh(2sA)−A cosh(2sA)).

After substituting into (F.72) and cancelling some positive factors, the inequality to show becomes

2sA sinh(2sA)

(
A−1e−A2

es2g(s)

)
+ 2sA coth(2sA)− (1 + 2s2) ≥ 0. (F.74)

We will prove this bound in two regimes: first, for 0 < s ≤ A, then for s > A.

Small s. To start, we will develop a simple estimate for g. Notice that

es
2

g(s) =

∫ A

−A

e−x2

e2sx dx

≤
∫ A

−A

e2sx dx

=
1

s
sinh(2As),

so it suffices to show
2s2e−A2

+ 2sA coth(2sA)− (1 + 2s2) ≥ 0.

42



For large A, the first term is sub-leading, and it suffices to simply show

2sA coth(2sA)− (1 + 2s2) ≥ 0.

We will show this bound on the requisite interval in two steps, since s 7→ s coth s does not have a globally-convergent power
series representation at zero. First, we have from the power series representation the bound 2sA coth 2sA ≥ 1+ (2sA)2

3 − (2sA)4

45
for all s; this bound is initially valid for |2sA| < π, then extended to all s by noticing that it is decreasing for 2sA ≥ π, whereas
2sA coth 2sA is increasing for s ≥ 0. With this bound, it suffices to show

2s2

3

(
2A2 − 3− 8A4s2

15

)
≥ 0,

which, when A2 ≥ 6, holds for all 0 ≤ s ≤ A−1
√
45/16. Next, notice that (F.74) can be written equivalently as

s
(
e−(s−A)2 − e−(s+A)2

)
+ g(s)

(
2sA coth(2sA)− (1 + 2s2)

)
≥ 0, (F.75)

where the first term is nonnegative. Since tanh(x) ≤ 1 if x ≥ 0, it then suffices to show

g(s)
(
2sA− (1 + 2s2)

)
≥ 0.

The concave quadratic function 2sA− (1 + 2s2) has its two roots at A
2 ±

√
A2−1
2 ; using the inequality

√
1− x ≥ 1− x for

0 ≤ x ≤ 1, it follows that these two roots are outside of the interval [ 1
2A , A− 1

2A ], and hence 2sA− (1+ 2s2) is nonnegative
on this interval. Since

√
45/16 ≥ 1

2 , this establishes the inequality on 0 < s ≤ A− 1
2A .

Finally, to demonstrate the inequality on A− 1
2A ≤ s ≤ A, we return to the sufficient expression of (F.74) given above, as

s
(
e−(s−A)2 − e−(s+A)2

)
+ g(s)

(
2sA− (1 + 2s2)

)
≥ 0,

and note again that the concave quadratic function 2sA− (1+ 2s2) is maximized at s = A/2, hence is a decreasing function
of s on this interval; so it suffices to show

s
(
e−(s−A)2 − e−(s+A)2

)
− g(s) ≥ 0,

From (F.73), it is clear that g is a decreasing function of s, so we can show

s
(
e−(s−A)2 − e−(s+A)2

)
− g(A− 1

2A ) ≥ 0.

Now, exploiting the fact that the parameter s in the definition of g(s) is similar to a “mean” parameter for the gaussian
integrand, we calculate

g(A− 1
2A ) =

∫ A

−A

e
−
(
x−(A− 1

2A )
)2

dx

=

∫ A− 1
2A

−A

e
−
(
x−(A− 1

2A )
)2

dx+

∫ A

A− 1
2A

e
−
(
x−(A− 1

2A )
)2

dx

≤
√
π

2
+

1

2A
.

The last line above worst-cases the value of the first integral (as it is no larger than half of the integral over R, by symmetry),
and uses a L1-L∞ bound to control the second. Meanwhile, using elementary inequalities and A2 ≥ 12 assumed previously,
we have

s
(
e−(s−A)2 − e−(s+A)2

)
≥
(
A− 1

2A

)(
1− (s−A)2 − e

−
(
2A− 1

2A

)2)
≥
(
A− 1

2A

)(
1− 1

4A2
− e−3A2

)
,

so it suffices to show
A

(
1− 1

2A2

)(
1− 1

4A2
− e−3A2

)
−
(√

π

2
+

1

2A

)
≥ 0,

which is evidently true for all A2 ≥ 12. This establishes the inequality on 0 < s ≤ A.
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Large s. For this regime, we will again proceed in steps; first for A ≤ s ≤ A + 1
3 , then for A + 1

3 ≤ s ≤ 2A, then for
s ≥ 2A.

First, we will develop the bound for A ≤ s ≤ A + c, where c > 0 is a small absolute constant. Proceeding as above,
but using now that when s ≥ A we have 2sA − (1 + 2s2) = −(1 + 2s(s − A) ≤ 0 so that we can leverage the bound
g(s) =

∫ s+A

s−A
e−x2

dx ≤
∫ s+A

0
e−x2

dx ≤
√
π/2, we have that it suffices to show

A
(
e−c2 − e−4A2

)
−

√
π

2
(1 + 2c(A+ c)) ≥ 0,

which, after rearranging, is simply

A
(
e−c2 −

√
πc
)
−Ae−4A2

−
√
π
(
1
2 + c2

)
≥ 0.

We verify numerically that this holds for c = 1
3 when A2 ≥ 12, as we have assumed.

Now we proceed for s ≥ A+ 1
3 . We will develop a sequence of refined upper bounds on g(s). We have from a change of

coordinates

g(s) = e−(s−A)2
∫ 2A

0

e−x2−2x(s−A) dx. (F.76)

Our previous estimate amounts to controlling the integral via e−x2 ≤ 1. We will improve over this estimate slightly by instead
developing a piecewise linear upper bound for the concave function x 7→ −x2 − 2x(s−A). Below, we will write t = s−A
for concision; by assumption t ≥ 1

3 . For any ε ≥ 0, by concavity, we have for all x ∈ R

−x2 − 2x(s−A) ≤ −2(t+ ε)x+ ε2.

Elementary algebra shows that the “null” upper bound for ε = 0, that is x 7→ −2tx, intersects with x 7→ −2(t+ ε)x+ ε2 at
x = ε/2. Hence, if 0 ≤ ε ≤ 4A, we can estimate the integral as∫ 2A

0

e−x2−2x(s−A) dx ≤
∫ ε/2

0

e−2tx dx+ eε
2

∫ 2A

ε/2

e−2(t+ε)x dx

=
1

2t

(
1− e−tε

)
+

1

2(t+ ε)

(
e−εt − eε

2

e−4(t+ε)A
)

≤ 1

2t

(
1− εe−εt

ε+ t

)
.

Choosing ε = 1/t, this bound implies

g(s) ≤ 1

2t
e−(s−A)2

(
1− e−1

1 + t2

)
,

and so it suffices to show

e−(s−A)2
(
s− 1

2(s−A)

(
1− e−1

1 + (s−A)2

)
(1 + 2s(s−A))

)
− se−(s+A)2 ≥ 0.

After some cancellation, this reads equivalently

1

2(s−A)

(
1 + 2s(s−A)

e(1 + (s−A)2)
− 1

)
− se−4sA ≥ 0.

We will estimate the term in parenthesis. We have

1 + 2s(s−A)

e(1 + (s−A)2)
− 1 =

(
−(1− 1

e )− (s−A)
(
s(1− 2

e )−A
)

1 + (s−A)2

)
.
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The numerator is a concave quadratic, which is maximized at s = A e−1
e−2 ; the constant is between 2 and 3. We check that

when s = A+ 1
3 and A2 ≥ 12, the numerator is positive. Using A+ 1

3 ≤ s ≤ 2A, we thus have that it suffices to show(
11 + 6A− 10e

9e(1 +A2)

)
− 4A

3
e−4A2

≥ 0.

We numerically verify that this inequality holds for all A2 ≥ 12.
Finally, we improve (F.76) once more and then use s ≥ 2A to conclude quickly. An improved estimate comes from [23,

Theorem 1]: we apply this to (F.76) to obtain

g(s) ≤ e−(s−A)2
∫ ∞

0

e−x2−2x(s−A) dx

=

√
π

2
erfc(s−A)

≤ e−(s−A)2

2(s−A)

[
1− 2− 3e−(1+2(s−A)) − 2(s−A)e−(1+2(s−A))

(1 + 2(s−A))2

]
,

where the estimate is applied in the third line, and the second line is a standard integral. Following then (F.75) and using again
that |tanh| ≤ 1, it suffices to show

1− 2− 3e−(1+2(s−A)) − 2(s−A)e−(1+2(s−A))

(1 + 2(s−A))2
≤

2s(s−A)
(
1− e−4sA

)
1 + 2s(s−A)

.

After rearranging with some algebra, it suffices to show

e−(1+2(s−A)) 3 + 2(s−A)

(1 + 2(s−A))2
+ e−4sA 2s(s−A)

1 + 2s(s−A)
≤ 2

(1 + 2(s−A))2
− 1

1 + 2s(s−A)
.

By algebra,
2

(1 + 2(s−A))2
− 1

1 + 2s(s−A)
=

1 + 4sA− 4(s−A)− 4A2

(1 + 2s(s−A))(1 + 2(s−A))2
,

which is easily seen to be nonnegative when s ≥ A. Clearing denominators, it then suffices to show

(3 + 2(s−A))(1 + 2s(s−A))e−(1+2(s−A)) + 2s(s−A)(1 + 2(s−A))2e−4sA ≤ 1 + 4sA− 4(s−A)− 4A2.

We can show this holds easily by worst-casing for convenience, since the LHS has exponential prefactors. Since s ≥ 2A, we
have 2(s−A) ≥ s. We always have s−A ≤ s, and since A ≥ 1 we have s ≥ 2, so it suffices to show

9s3e−s + 18s4e−4sA ≤ 1 + 4sA− 4(s−A)− 4A2.

Elementary calculus implies that the first term on the LHS is decreasing as soon as s ≥ 3, and the second term is decreasing
as soon as s ≥ 1/A, both of which are implied by s ≥ 2A and our assumptions on A. Since the RHS is increasing, it suffices
to check

9A3e−A + 18A4e−4A2

≤ 1 + 4A(A− 1).

A numerical evaluation and the preceding calculus argument shows that this is true as soon as A ≥ 3.

Lemma F.12. Consider the residual field arising in the study of the alignment gradient: for any ν ∈ R, we consider

ūroughū
∗
rough ◦ τν − ūroughū

∗
rough ◦ τ−ν ,

where the (unscaled, for convenience) nominal rough initial representation is defined as

ūrough(s) = 1|s|≤1 cos(πs/2).

45



Then for any x = (s, t) with 0 ≤ t ≤ s ≤ 1, the difference is nonnegative:

ūroughū
∗
rough ◦ τν(x)− ūroughū

∗
rough ◦ τ−ν(x) ≥ 0,

and moreover for any x = (s, t) with 0 ≤ t ≤ s ≤ 1 and any 0 ≤ ν ≤ π/7, it satisfies the estimate

ūroughū
∗
rough ◦ τν(x)− ūroughū

∗
rough ◦ τ−ν(x) ≥

7 sin ν
1000

1
−0.137≤t− 1√

2
≤−0.127

1
−0.001≤s− 1√

2
≤0.001

.

Proof. We have to show
ūroughū

∗
rough ◦ τ−ν − ūroughū

∗
rough ◦ τν ≤ 0.

Using two trigonometric identities, we can write for any x = (s, t) with 0 ≤ t ≤ s ≤ 1

ūroughū
∗
rough ◦ τ−ν(x)− ūroughū

∗
rough ◦ τν(x)

= sin(π2 (s+ t) cos ν) sin(π2 (s− t) sin ν)− sin(π2 (s− t) cos ν) sin(π2 (s+ t) sin ν).

It is clear that this expression is identically zero when ν = 0 or s = t, so assume otherwise below. To show the expression is
nonpositive, it is equivalent to show

sin(π2 (s+ t) cos ν)
sin(π2 (s+ t) sin ν)

≤
sin(π2 (s− t) cos ν)
sin(π2 (s− t) sin ν)

for each 0 ≤ t ≤ s ≤ 1 and all 0 ≤ ν ≤ π/4. Given that under these constraints s+ t ≤ 2, it therefore suffices to show that

x 7→
sin(π2x cos ν)
sin(π2x sin ν)

is a decreasing function of x on [0, 2]. Rescaling coordinates, this is equivalent to showing that

x 7→ sin(x cot ν)
sinx

is decreasing on [0, π sin ν], and because 1/ cot ν ≥ sin ν when 0 ≤ ν ≤ π/4 it suffices instead to show decreasingness on
[0, π/ cot ν]. This is a standard calculation that arises in the study of the Dirichlet kernel in Fourier analysis; to obtain it, write
A = cot ν and differentiate to obtain the sufficient condition

Ax cotAx ≤ x cotx, 0 < x < π/A.

This can be seen, for instance, from the power series expression for x cotx, convergent for |x| < π:

Ax cotAx = 1− 2

∞∑
k=1

ζ(2k)

π2k
A2kx2k ≤ 1− 2

∞∑
k=1

ζ(2k)

π2k
x2k = x cotx,

since A ≥ 1 and all terms in the sum are nonpositive, where ζ denotes the Riemann zeta function. Thus we have shown

ūroughū
∗
rough ◦ τ−ν − ūroughū

∗
rough ◦ τν ≤ 0.

Next, we show the quantitative bound. By our earlier work, we can write at any x = (s, t) with 0 ≤ t < s ≤ 1

√
π

2

(
ūroughū

∗
rough ◦ τν(x)− ūroughū

∗
rough ◦ τ−ν(x)

)
= sin(π2 (s+ t) sin ν) sin(π2 (s− t) cos ν)− sin(π2 (s+ t) cos ν) sin(π2 (s− t) sin ν). (F.77)

We will obtain a lower bound for this expression by combining term-by-term bounds, optimized for t ≈ s. The difference
terms are easiest: we can use the standard estimates

sin
(
π
2 (s− t) cos ν

)
≥ π

2 (s− t) cos ν −
(
π
2 (s− t) cos ν

)3
/6,

sin
(
π
2 (s− t) sin ν

)
≤ π

2 (s− t) sin ν,
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which follow by concavity. Similarly, concavity gives the estimates

sin
(
π
2 (s+ t) sin ν

)
≥ sin (πs sin ν) + π

2 sin ν cos (πs sin ν) (t− s)− π2 sin2 ν
8

(t− s)2,

sin
(
π
2 (s+ t) cos ν

)
≤ sin (πs cos ν) + π

2 cos ν cos (πs cos ν) (t− s).

These estimates yield a polynomial lower bound for the difference term when substituted into (F.77). Since we know this
difference is nonnegative, we can improve the bound by taking the maximum of it and zero, and then further simplify the
bound based on its local behavior near t ≈ s to a quadratic lower bound. To this end, we have the unwieldy lower bound

ūroughū
∗
rough ◦ τν(x)− ūroughū

∗
rough ◦ τ−ν(x) ≥

π(s− t)

2
(cos(ν) sin(πs sin ν)− sin(ν) sin(πs cos ν))

− π2(s− t)2 cos ν sin ν
4

(cos(πs sin ν)− cos(πs cos ν))

− π3(s− t)3 cos ν
16

(
sin2 ν +

1

3
cos2 ν sin(πs sin ν)

)
+
π4(s− t)4 cos3(ν) cos(πs sin ν) sin ν

96
+
π5(s− t)5 cos3(ν) sin2(ν)

384
.

The degree four and five terms in this bound are both nonnegative, hence can be worst-cased out. To verify that the degree-two
term dominates the degree-three term, we have to show for some 0 < ε < 1

(1− ε) sin ν (cos(πs sin ν)− cos(πs cos ν))− π(s− t)

4

(
sin2 ν +

1

3
cos2 ν sin(πs sin ν)

)
≥ 0.

We have 0 ≤ s − t ≤ 1, and the LHS of the previous bound is a decreasing function of s − t. Moreover, we have
sin(πs sin ν)/ sin ν ≤ πs. Hence, to show this bound holds for all 0 ≤ ν ≤ π/7 and all 0 ≤ s − t ≤ 1/2, it suffices
to show for some ε

(1− ε) (cos(πs sin ν)− cos(πs cos ν))− π

8

(
sinπ/7 +

πs

3

)
≥ 0.

We will show this by lower bounding the first term with calculus. We have for the second derivative of the first summand

∂2ν [cos(πs sin ν)](ν) = sin(πs sin ν)(πs sin ν)− (πs cos ν)2 cos(πs sin ν).

We notice that this is an increasing function of ν, because it is a difference of two terms which are (respectively) a product of
two nonnegative increasing functions and a product of two nonnegative decreasing functions. Hence it attains its minimum
value at ν = 0. Similarly, we have

∂2ν [− cos(πs cos ν)](ν) = (πs sin ν)2 cos(πs− (πs cos ν) sin(πs cos ν) cos ν),

which is once again a difference of a product of two nonnegative increasing functions and a product of two nonnegative
decreasing functions, hence attains its minimum value at ν = 0. It follows that the same is true of the sum, and Taylor’s
theorem then implies the lower bound

cos(πs sin ν)− cos(πs cos ν) ≥ (1− cosπs)− (πs)2 + πs sinπs
2

ν2.

When s ≥ 1
2 , we have − cosπs ≥ 2s− 1. Worst-casing ν ≤ π/7 and choosing ε = 1/8, it then suffices to show under these

conditions (
2s− (πs)2 + πs sinπs

2
(π/7)2

)
− π

7

(
sinπ/7 +

πs

3

)
≥ 0.

A numerical evaluation shows that this holds for all 1
2 ≤ s ≤ 1. Hence, we have the lower bound, valid for 1

2 ≤ s ≤ 1, all
s− 1

2 ≤ t ≤ s, and all 0 ≤ ν ≤ π/7:

ūroughū
∗
rough ◦ τν(x)− ūroughū

∗
rough ◦ τ−ν(x) ≥

π(s− t)

2
(cos(ν) sin(πs sin ν)− sin(ν) sin(πs cos ν))

− 15π2(s− t)2 cos ν sin ν
32

(cos(πs sin ν)− cos(πs cos ν)) .
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Letting

A =
π

2
(cos(ν) sin(πs sin ν)− sin(ν) sin(πs cos ν)) ,

B =
15π2 cos ν sin ν

32
(cos(πs sin ν)− cos(πs cos ν)) ,

we have B ≥ 0 since cos is decreasing and sin ≤ cos on our interval of interest, and

ūroughū
∗
rough ◦ τν(x)− ūroughū

∗
rough ◦ τ−ν(x) ≥ Ar −Br2 = B

((
A

2B

)2

−
(
r − A

2B

)2
)
,

where the RHS is a concave quadratic function of r = s− t. For such a concave quadratic, the above forms make it clear that
its two roots are at 0 and A/B, and by concavity we have

Ar −Br2 ≥ 3A2

16B
1|r−A/2B|≤|A/4B|.

We will show that this bound also applies to ūroughū
∗
rough ◦τν(x)− ūroughū

∗
rough ◦τ−ν(x) on our interval of interest, by showing

that A ≥ 0 and when A/4B ≤ s− t ≤ 3A/4B, s and t satisfy the previously assumed conditions uniformly in ν. To see that
A ≥ 0, notice that

A =
π sin ν cos ν

2

(
sin(πs sin ν)

sin ν
− sin(πs cos ν)

cos ν

)
.

The function x 7→ sinx/x is decreasing when 0 ≤ x ≤ π, showing that A ≥ 0. This means that any s, t for which
s− t ≥ A/4B satisfies our hypotheses. Next, note that

ν 7→ sin(πs sin ν)
sin ν

− sin(πs cos ν)
cos ν

is decreasing, as x 7→ sinx/x is nonnegative and decreasing for 0 ≤ x ≤ π (the chain rule implies the composition is
decreasing as a sum of decreasing functions). By the same token,

ν 7→ cos(πs sin ν)− cos(πs cos ν)

is decreasing on our domain of interest. This implies

sin(πs sin π/7)
sin π/7 − sin(πs cos π/7)

cos π/7

1− cos(πs)
≤

sin(πs sin ν)
sin ν − sin(πs cos ν)

cos ν
cos(πs sin ν)− cos(πs cos ν)

≤ πs− sin(πs)
cos(πs sinπ/7)− cos(πs cosπ/7)

.

A numerical evaluation shows that both the LHS and the RHS are increasing. Hence, if s ≤ 0.72, we have the bound

sin(πs sin ν)
sin ν − sin(πs cos ν)

cos ν
cos(πs sin ν)− cos(πs cos ν)

≤ 0.72π − sin(0.72π)
cos(0.72π sinπ/7)− cos(0.72π cosπ/7)

≤ 1.483,

which implies
3A

4B
≤ 1.483 · 4

5π
≤ 0.378,

showing that any s, t for which s − t ≤ 3A/4B satisfies our hypotheses. Finally, as above, using s ≥ 0.7 we can obtain the
lower bound

sin(πs sin ν)
sin ν − sin(πs cos ν)

cos ν
cos(πs sin ν)− cos(πs cos ν)

≥
sin(0.7π sin π/7)

sin π/7 − sin(0.7π cosπ/7)
cos π/7

1− cos(0.7π)
≥ 0.544,

which implies
A

4B
≥ 0.544 · 4

15π
≥ 0.046.
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Consequently, we have established

ūroughū
∗
rough ◦ τν(x)− ūroughū

∗
rough ◦ τ−ν(x) ≥

9π(cos(ν) sin(πs sin ν)− sin(ν) sin(πs cos ν))
800

1|(s−t)−A/2B|≤|A/4B|.

As above, we can worst-case this bound further. Since

cos(ν) sin(πs sin ν)− sin(ν) sin(πs cos ν) = sin(ν) cos(ν)
(

sin(πs sin ν)
sin ν

− sin(πs cos ν)
cos ν

)
≥ sin(ν) cos(π/7)

(
sin(πs sinπ/7)

sinπ/7
− sin(πs cosπ/7)

cosπ/7

)
≥ sin(ν) cos(π/7)

(
sin(π/2 sinπ/7)

sinπ/7
− sin(π/2 cosπ/7)

cosπ/7

)
≥ sin ν

5
,

we have
ūroughū

∗
rough ◦ τν(x)− ūroughū

∗
rough ◦ τ−ν(x) ≥

7 sin ν
1000

1|(s−t)−A/2B|≤|A/4B|.

In addition, we have shown above
0.184 ≤ A

B
≤ 0.504,

which implies
A

4B
≤ 0.126,

3A

4B
≥ 0.138,

whence
ūroughū

∗
rough ◦ τν(x)− ūroughū

∗
rough ◦ τ−ν(x) ≥

7 sin ν
1000

10.126≤(s−t)≤0.138.

Because we have shown that the LHS is nonnegative previously, this bound holds for all t. Now notice that we can write the
constraint on t on the RHS equivalently as

0.126 ≤ s− t ≤ 0.138 ⇐⇒ (s− 0.132)− 0.006 ≤ t ≤ (s− 0.132) + 0.006.

Hence, if we consider a sub-interval of valid s, namely s ∈ [ 1√
2
− 0.001, 1√

2
+ 0.001], we have for such s

0.126 ≤ s− t ≤ 0.138 ⇐= ( 1√
2
− 0.132)− 0.005 ≤ t ≤ ( 1√

2
− 0.132) + 0.005.

In particular,
10.126≤(s−t)≤0.13810.7≤s≤0.72 ≥ 1

−0.137≤t− 1√
2
≤−0.127

1
−0.001≤s− 1√

2
≤0.001

.

Lemma F.13. For β > 0, let u = 1[−β,β], and for some smoothing level σ > 0 consider the associated curl fields

Cβ(x) =

〈
∇x[ϕσ2 ∗ uu∗](x),

[
0 −1
1 0

]
x

〉
`2
. (F.78)

We have the following estimates: if σ2 ≥ 1 and 1/
√
2 ≤ α ≤ 1, then

〈C1, Cα〉L2(R2) ≥
1

8πσ4
,

and for any β and any σ2 > 0,

〈Cβ , Cβ〉L2(R2) ≤
β4

σ4

(
σ2 + 2β2

)
.
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Proof. If we unravel the expression (F.78), we have

C(s, t) = 〈∇x[ϕσ2 ∗ uu∗](s, t), (−t, s)〉`2

=

〈∫
R

∫
R

[
u(s′)u(t′)ϕσ2(t− t′)∇s[ϕσ2 ](s− s′)
u(s′)u(t′)ϕσ2(s− s′)∇t[ϕσ2 ](t− t′)

]
ds dt, (−t, s)

〉
`2

= 1∗
[
−t
(∫

R u(s
′)∇sϕσ2(s− s′) ds′

) (∫
R u(t

′)ϕσ2(t− t′) dt′
)

s
(∫

R u(s
′)ϕσ2(s− s′) ds′

) (∫
R u(t

′)∇tϕσ2(t− t′) dt′
) ] .

Defining

f1(x) =

∫
R
u(x′)∇ϕσ2(x− x′) dx′;

f2(x) = −x
∫
R
u(x′)ϕσ2(x− x′) dx′,

the above implies
C(s, t) = f1(s)f2(t)− f1(t)f2(s). (F.79)

Now notice that, by the fundamental theorem of calculus,

f1(x) =

∫
R
u(x− x′)∇ϕσ2(x′) dx′

=

∫ x+β

x−β

∇ϕσ2(x′) dx′

= ϕσ2(x+ β)− ϕσ2(x− β). (F.80)

For the estimates we need, we introduce more general notation: for any γ > 0 (following (F.80)), let

fγ1 (x) = ϕσ2(x+ γ)− ϕσ2(x− γ);

fγ2 (x) = −x
∫
R
1[−γ,γ](x

′)ϕσ2(x− x′) dx′.

Our task is to estimate Ξ, defined as

Ξ(α, β) =
〈
fα1 (f

α
2 )

∗ − fα2 (f
α
1 )

∗, fβ1 (f
β
2 )

∗ − fβ2 (f
β
1 )

∗
〉
L2(R2)

,

since by the analysis above we have 〈Cα, Cβ〉L2(R2) = Ξ(α, β). Distributing in the inner product, we have

Ξ(α, β) = 2
(
〈fα1 , f

β
1 〉〈fα2 , f

β
2 〉 − 〈fα1 , f

β
2 〉〈fα2 , f

β
1 〉
)
. (F.81)

We first estimate the cross terms 〈fα2 , f
β
1 〉. We have by (F.80)

〈fα2 , f
β
1 〉 =

∫
R
x(1[−α,α] ∗ ϕσ2)(x) (ϕσ2(x− β)− ϕσ2(x+ β)) dx.

As above, we can integrate this out once again. We have, following the argument in (F.80)∫
R
x1[−α,α](x− x′)ϕσ2(x− β) dx =

∫
R
(x− β)1[−α,α](x− x′)ϕσ2(x− β) dx+ β

∫
R
1[−α,α](x− x′)ϕσ2(x− β) dx

= −σ2

∫
R
1[−α,α](x− x′)∇ϕσ2(x− β) dx+ β

∫
R
1[−α,α](x− x′)ϕσ2(x− β) dx

= σ2 (ϕσ2(x′ − α− β)− ϕσ2(x′ + α− β)) + β

∫
R
1[−α,α](x− x′)ϕσ2(x− β) dx.
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Reasoning symmetrically, we get∫
R
x1[−α,α](x− x′) (ϕσ2(x− β)− ϕσ2(x+ β)) dx = σ2

(
ϕσ2(x′ − α− β)− ϕσ2(x′ + α− β)

− ϕσ2(x′ − α+ β) + ϕσ2(x′ + α+ β)
)

+ β

∫
R
1[−α,α](x− x′) (ϕσ2(x− β) + ϕσ2(x+ β)) dx.

To obtain 〈fα2 , f
β
1 〉 from this last expression, we integrate against ϕσ2(x′). Integrating this function against the first term on

the RHS of the previous expression yields a convolution between gaussians, which is another gaussian:

σ2

∫
R
ϕσ2(x′)

(
ϕσ2(x′ − α− β)− ϕσ2(x′ + α− β)− ϕσ2(x′ − α+ β) + ϕσ2(x′ + α+ β)

)
dx′

= 2σ2 (ϕ2σ2(α+ β)− ϕ2σ2(α− β)) , (F.82)

where we used even symmetry of the gaussian. Integrating against the second term can be similarly manipulated to give

β

∫
R

∫
R
1[−α,α](x− x′) (ϕσ2(x− β) + ϕσ2(x+ β))ϕσ2(x′) dx

= β

∫
R

∫
R
1[−α,α](x) (ϕσ2(x+ x′ − β) + ϕσ2(x+ x′ + β))ϕσ2(x′) dx

= β

∫
R

∫
R
1[−α,α](x) (ϕσ2(β − x− x′) + ϕσ2(−β − x− x′))ϕσ2(x′) dx

= β

∫
R
1[−α,α](x) (ϕ2σ2(β − x) + ϕ2σ2(−β − x)) dx

= β
(
1[−α,α] ∗ ϕ2σ2(β) + 1[−α,α] ∗ ϕ2σ2(−β)

)
.

Thus
〈fα2 , f

β
1 〉 = 2σ2 (ϕ2σ2(α+ β)− ϕ2σ2(α− β)) + 2β1[−α,α] ∗ ϕ2σ2(β).

The remaining calculations proceed along similar lines. We have by symmetry

〈fα1 , f
β
1 〉 = 2〈ϕσ2( · + α), ϕσ2( · + β)〉L2 − 2〈ϕσ2( · + α), ϕσ2( · − β)〉L2

= 2 (ϕ2σ2(β − α)− ϕ2σ2(β + α)) , (F.83)

because the integrals are gaussian convolutions. Notice that this implies

〈fα2 , f
β
1 〉 = 2β(1[−α,α] ∗ ϕ2σ2)(β)− σ2〈fα1 , f

β
1 〉. (F.84)

For the remaining integral, we start with

〈fα2 , f
β
2 〉 =

〈
( · )
∫
R
1[−α,α](x

′)ϕσ2( · − x′) dx′, ( · )
∫
R
1[−β,β](x

′)ϕσ2( · − x′) dx′
〉
,

which motivates us to consider∫
R
x2ϕσ2(x− x′)ϕσ2(x− x′′) dx = ϕ2σ2(x′ − x′′)

∫
R
x2ϕσ2/2

(
x− x′+x′′

2

)
dx

= ϕ2σ2(x′ − x′′)

∫
R

(
x+ x′+x′′

2

)2
ϕσ2/2(x) dx

= ϕ2σ2(x′ − x′′)

(
σ2

2
+

(x′ + x′′)2

4

)
,

where the first line follows by completing the square. In particular, this shows that

〈fα2 , f
β
2 〉 =

∫
R

∫
R
1[−α,α](x

′)1[−β,β](x
′′)ϕ2σ2(x′ − x′′)

(
σ2

2
+

(x′ + x′′)2

4

)
dx′ dx′′. (F.85)
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We turn to using these calculations to obtain the remaining estimates. From (F.85), we have (because all terms in the
integral are nonnegative)

〈fα2 , f
β
2 〉 ≥

σ2

2

∫
R

∫
R
1[−α,α](x

′)1[−β,β](x
′′)ϕ2σ2(x′ − x′′) dx′ dx′′

=
ϕ2σ2(0)σ2

2

∫
R

∫
R
1[−α,α](x

′)1[−β,β](x
′′)

− σ2

2

∫
R

∫
R
1[−α,α](x

′)1[−β,β](x
′′) (ϕ2σ2(0)− ϕ2σ2(x′ − x′′)) dx′ dx′′

≥ 2αβσ2ϕ2σ2(0)− ϕ2σ2(0)

8

∫
R

∫
R
1[−α,α](x

′)1[−β,β](x
′′)(x′ − x′′)2 dx′ dx′′

= 2αβσ2ϕ2σ2(0)− ϕ2σ2(0)

8

∫ α

−α

∫ β

−β

(x′ − x′′)2 dx′ dx′′

= 2αβσ2ϕ2σ2(0)− ϕ2σ2(0)

6

(
α3β + β3α

)
, (F.86)

where the second line applies the triangle inequality, and the third uses the inequality 1− e−x ≤ x. From (F.84) and (F.83),
we require upper and lower bounds on (F.83). We have

〈fα1 , f
β
1 〉 = 2ϕ2σ2(0)e−

1
4σ2 (β−α)2

(
1− e−

1
4σ2 ((β+α)2−(α−β)2)

)
.

Upper bounds from here are straightforward, using that e−x ≤ 1 for x ≥ 0 and 1− e−x ≤ x. We get

〈fα1 , f
β
1 〉 ≤

2αβϕ2σ2(0)

σ2
. (F.87)

Lower bounds can be obtained similarly: by the mean value theorem, there is a ξ ∈ (1/(4σ2))[(β − α)2, (β + α)2] such that(
e−

(β−α)2

4σ2 − e−
(α+β)2

4σ2

)
= e−ξ

(
(α+ β)2

4σ2
− (β − α)2

4σ2

)
= e−ξ αβ

σ2
.

Using the lower bound on ξ and the fact that e−x ≥ 1− x gives the lower bound

〈fα1 , f
β
1 〉 ≥

2αβϕ2σ2(0)

σ2

(
1− (β − α)2

4σ2

)
. (F.88)

It remains to estimate the remaining term in (F.84). We write

2β(1[−α,α] ∗ ϕ2σ2)(β) = 4αβ

∫
R

1

2α
1[−α,α](x

′)ϕ2σ2(β − x′) dx′

≤ 4αβϕ2σ2(0)

∫
R

1

2α
1[−α,α](x

′)

(
1− (β − x′)2

4σ2
+

(β − x′)4

32σ4

)
dx′

= 4αβϕ2σ2(0)

(
1− 1

4σ2

(
α2

3
+ β2

)
+

1

32σ4

(
α4

5
+ 2α2β2 + β4

))
(F.89)

using again e−x ≤ 1−x+ 1
2x

2 in the second line. Plugging (F.87), (F.88), (F.89) and (F.86) into (F.81), we have the estimate

1

2
Ξ(α, β) ≥4α2β2 (ϕ2σ2(0))

2

((
1− (β − α)2

4σ2

)(
1− 1

12σ2

(
α2 + β2

))

−
(
1− 1

2σ2

(
α2

3
+ β2

)
+

1

16σ4

(
α4

5
+ 2α2β2 + β4

))(
1− 1

2σ2

(
β2

3
+ α2

)
+

1

16σ4

(
β4

5
+ 2α2β2 + α4

)))
,

52



where plugging in in this manner is justified by the fact that both factors in the product to the right of the minus sign are
positive as long as σ2 ≥ α2/6 + β2/2. Specializing to our setting of interest where α ≤ 1 and β = 1 and collecting terms
makes this bound become (after simplifying constants numerically)

1

2
Ξ(α, 1) ≥ 1

2πσ4

(
2/3 + α/2− 0.845

σ2
− 0.04

σ6

)
,

and the requirement is σ2 ≥ 2/3. Choosing σ ≥ 1 and α ≥ 1/
√
2, the term in parentheses is no smaller than 1/8, which

gives the lower bound

Ξ(α, 1) ≥ 1

8πσ4
.

The remaining upper bounds can be obtained easily from our work above. Notice that

1

2
Ξ(α, α) = ‖fα1 ‖2L2‖fα2 ‖2L2 − 〈fα1 , fα2 〉2

≤ ‖fα1 ‖2L2‖fα2 ‖2L2 .

(F.87) gives a suitable upper bound on the first term; we only need to develop an upper bound on the second term. From
(F.85), we proceed as

〈fα2 , fα2 〉 =
∫
R

∫
R
1[−α,α](x

′)1[−α,α](x
′′)ϕ2σ2(x′ − x′′)

(
σ2

2
+

(x′ + x′′)2

4

)
dx′ dx′′

≤
∫
{s2+t2≤2α2}

ϕ2σ2(s− t)

(
σ2

2
+

(s+ t)2

4

)
dx′ dx′′

≤
∫
{s2+t2≤2α2}

ϕ2σ2(s− t)

(
σ2

2
+ α2

)
dx′ dx′′

≤
(
σ2

2
+ α2

)∫
{s2+t2≤2α2}

ϕ2σ2(
√
2s) dx′ dx′′

≤ ϕ2σ2(0)

(
σ2

2
+ α2

)
2πα2,

where we pass to an enclosing circular domain in the second line by the fact that the integrand is nonnegative, use Cauchy-
Schwarz in the third line and replace (s+t)2 ≤ 2s2+2t2 by its maximum over the domain of integration, apply an orthogonal
change of coordinates in the fourth line, and use Hölder’s inequality for the fifth line. Thus, invoking also (F.87), we have

Ξ(α, α) ≤ α4

σ4

(
σ2 + 2α2

)
.

Lemma F.14. Let u = 1[−α,α] for some α > 0, and for some smoothing level σ > 0 consider the associated curl field

C(x) =
〈
∇x[ϕσ2 ∗ uu∗](x),

[
0 −1
1 0

]
x

〉
`2
.

Writing x = (s, t), and defining

f(s) =

∫ α

−α

ϕσ2(s− x) dx,

as in the proof of Lemma F.13, we have the explicit expression

∇xC(x) =
[
sf ′(s)f ′(t) + f(s)f ′(t)− tf(t)f ′′(s)
sf(s)f ′′(t)− f(t)f ′(s)− tf ′(s)f ′(t)

]
, (F.90)
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and the ‘iterated curl field’ satisfies the estimate∫
R2

(〈
∇xC(s, t),

[
−t
s

]〉
`2

)2

ds dt ≤ 28α4

πσ2
+

3α6(20σ2 + 4α2)

10πσ6
,

and if α2 ≤ 1, it also satisfies the estimate (which is better when σ is small)∫
R2

(〈
∇xC(s, t),

[
−t
s

]〉
`2

)2

ds dt ≤ 3

π
+

55

πσ2
+

4

5πσ4
.

Above, we use ϕσ2 interchangeably for a one-dimensional gaussian function and a two-dimensional gaussian function, with
the meaning clear from the dimensionality of its argument.

Proof. Following the proof of Lemma F.13, we have

C(s, t) = sf(s)f ′(t)− tf(t)f ′(s),

where by the fundamental theorem of calculus,

f ′(x) = ϕσ2(x+ α)− ϕσ2(x− α).

It is straightforward to calculate (F.90) from this expression. We have〈
∇xC(s, t),

[
−t
s

]〉
`2

= f(t)
(
t2f ′′(s)− sf ′(s)

)
+ f(s)

(
s2f ′′(t)− tf ′(t)

)
− 2stf ′(s)f ′(t).

We square and integrate this expression in order to take care of the permutation symmetry. Using computer algebra software,
one obtains∫

R2

(〈
∇xC(s, t),

[
−t
s

]〉
`2

)2

ds dt = 2‖pxf ′‖2L2‖f‖2L2 + 8‖pxf ′‖2L2

∫
R
pxff

′ + 2‖f ′′‖2L2‖px2f‖2L2

− 4

(∫
R
ff ′′

)(∫
R
px3ff ′

)
− 8

(∫
R
pxf

′f ′′
)(∫

R
px3ff ′

)
− 4‖pxf‖2L2

∫
R
pxf

′f ′′ + 2

(∫
R
pxff

′
)2

+ 4‖pxf ′‖4L2 + 2

(∫
R
px2ff ′′

)2

.

In this expression, if x 7→ g(x) is a polynomial in x we write pg(x) to denote the function x 7→ g(x). We can simplify further
using integration by parts. It is clear that f vanishes at infinity faster than any polynomial, and the expression for f ′ as a
difference of gaussians shows this is also true of every derivative of f . Thus, we find straightforwardly∫

R
px3ff ′ = −3

2
‖pxf‖2L2 ,∫

R
pxf

′f ′′ = −1

2
‖f ′‖2L2 ,∫

R
ff ′′ = −‖f ′‖2L2 ,∫

R
pxff

′ = −1

2
‖f‖2L2 ,∫

R
px2ff ′′ = ‖f‖2L2 − ‖pxf ′‖2L2 .

Applying these identities, we simplify the previous expression to∫
R2

(〈
∇xC(s, t),

[
−t
s

]〉
`2

)2

ds dt = 6‖pxf ′‖2L2

(
‖pxf ′‖2L2 − ‖f‖2L2

)
+

5

2
‖f‖4L2

+ 2‖f ′′‖2L2‖px2f‖2L2 − 10‖f ′‖2L2‖pxf‖2L2

≤ 6‖pxf ′‖4L2 +
5

2
‖f‖4L2 + 2‖f ′′‖2L2‖px2f‖2L2
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We can estimate the integrals involving f using Jensen’s inequality. In particular, notice that

(f(s))
2
=

(∫ α

−α

ϕσ2(s− x) dx
)2

= (2α)2
(

1

2α

∫ α

−α

ϕσ2(s− x) dx
)2

≤ 2α

∫ α

−α

ϕσ2(s− x)2 dx,

by Jensen’s inequality for the convex function x 7→ x2. Since

ϕσ2(s− x)2 =
1

2
√
πσ2

ϕσ2/2(s− x),

we obtain
(f(s))

2 ≤ α

σ
√
π

∫ α

−α

ϕσ2/2(s− x) dx,

which is a scaled version of f with the variance of the gaussian smoothing halved. From here, it follows by Fubini’s theorem
and standard (non-centered) gaussian moment calculations

‖f‖2L2 ≤ 2α2

σ
√
π
;

‖px2f‖2L2 ≤ α

σ
√
π

∫ α

−α

∫
R
s4ϕσ2/2(s− x) ds dx

=
α

4σ
√
π

∫ α

−α

(
3σ4 + 12σ2x2 + 4x4

)
dx

=
α2
(
15σ4 + 20σ2α2 + 4α4

)
10σ

√
π

.

The remaining terms are gaussian integrals, and can be calculated easily. We evaluate

‖pxf ′‖2L2 =
1

2σ
√
π

(
2α2 + σ2

(
1− e−

α2

σ2

))
;

‖f ′′‖2L2 =
1

2σ5
√
π

(
2α2e−

α2

σ2 + σ2

(
1− e−

α2

σ2

))
.

We can simplify these expressions further: applying the inequality 1− x ≤ e−x gives

‖pxf ′‖2L2 ≤ 3α2

2σ
√
π
;

‖f ′′‖2L2 ≤ 3α2

2σ5
√
π
.

Combining, we thus get ∫
R2

(〈
∇xC(s, t),

[
−t
s

]〉
`2

)2

ds dt ≤ 28α4

πσ2
+

3α6(20σ2 + 4α2)

10πσ6
.

We can obtain improved estimates when σ is small: writing

‖f ′′‖2L2 =
1

2σ3
√
π

(
2α2

σ2
e−

α2

σ2 + 1− e−
α2

σ2

)
,
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evidently
2α2

σ2
e−

α2

σ2 + 1− e−
α2

σ2 ≤ 1 +
2

e
,

and the RHS is no larger than 2; hence

‖f ′′‖2L2 ≤ 1

σ3
√
π
.

Combining in this case gives the estimate (together with α2 ≤ 1)∫
R2

(〈
∇xC(s, t),

[
−t
s

]〉
`2

)2

ds dt ≤ 3

π
+

55

πσ2
+

4

5πσ4
.

F.3. Auxiliary Results

Lemma F.15. Let f : [−1,+1] → R be a L-Lipschitz function, and let π1(G) be the projection of the rectangular grid G
onto its first coordinate. One has ∣∣∣∣∣∣ 2n

∑
i∈π1(G)

f(i)−
∫
[−1,1]

f(t) dt

∣∣∣∣∣∣ ≤ 2L

n
.

Proof. Define

δi = −1 + i
2

n− 1
, i = 0, 1, . . . , n− 1,

so that ∫
[−1,1]

f(t) dt =
∫ δ0+

2
n

δ0

f(t) dt+
∫ δn−1

δn−1−
2
n

f(t) dt+
n−2∑
i=1

∫ δi+
1
n

δi−
1
n

f(t) dt.

This is a ‘midpoint’ estimate of the integral, given the boundary. Since

∑
i∈π1(G)

f(i) =
n−1∑
i=0

f(δi),

we obtain from the triangle inequality and the Lipschitz property of f∣∣∣∣∣∣ 2n
∑

i∈π1(G)

f(i)−
∫ 1

−1

f(t) dt

∣∣∣∣∣∣ ≤
∫ δ0+

2
n

δ0

|f(δ0)− f(t)| dt+
∫ δn−1

δn−1−
2
n

|f(δn−1)− f(t)| dt+
n−2∑
i=1

∫ δi+
1
n

δi−
1
n

|f(δi)− f(t)| dt

≤ L

∫ δ0+
2
n

δ0

(t− δ0) dt+
∫ δn−1

δn−1−
2
n

(δn−1 − t) dt+
n−2∑
i=1

∫ δi+
1
n

δi−
1
n

|t− δi| dt


= L

(
4

n2
+

n−2∑
i=1

1

n2

)

≤ 2L

n
,

where the last estimate holds if n ≥ 2.

Lemma F.16. Let U ,V ∈ Rm×n, and let D ∈ Rn×n be a diagonal matrix. Let ||| · ||| be any unitarily invariant matrix norm.
Then one has

|||UDV ∗||| ≤ 1

2

(
||||D|1/2U∗U |D|1/2|||+ ||||D|1/2V ∗V |D|1/2|||

)
,
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where |A| = (A∗A)1/2 denotes the positive part of a matrix, and the matrix norms in this expression are to be interpreted in
terms of the ‘dilation norm’ of the larger size matrix norm.5

Proof. We apply a slight modification of a matrix arithmetic-geometric mean inequality. There exists a diagonal matrix
S ∈ Rn×n with diagonal entries either 1 or

√
−1 such that SDS = |D|. Then S∗S = I , so S is unitary, and by [7,

Corollary IX.4.4],

|||UDV ∗||| = |||US|D|SV ∗||| = |||(US|D|1/2)(V S∗|D|1/2)∗|||

≤ 1

2

(
||||D|1/2S∗U∗US|D|1/2 + |D|1/2SV ∗V S∗|D|1/2|||

)
.

Now apply the triangle inequality and use the fact that diagonal matrices commute and that ||| · ||| is unitarily invariant to
establish the claim.

Lemma F.17. For σ2 > 0, let ϕσ2(t) = 1/
√
2πσ2 exp(− 1

2σ2 t
2) denote the one-dimensional standard gaussian, and let

mσ2 = ϕ⊗2
σ2 . Let f, g ∈ L1(R2) ∩ L2(R2), and let Ḡ denote the infinite extension of the image sampling grid G defined in

(F.6):

Ḡ =

{(
1 +

2k

n− 1
, 1 +

2l

n− 1

) ∣∣∣∣ (k, l) ∈ Z2

}
(notice that G ⊂ Ḡ). Let `2(Ḡ) denote the space of square-summable sequences defined on Ḡ. Then it holds∣∣∣∣∣

(
n− 1

2

)2

〈mσ2 ∗ f,mσ2 ∗ g〉L2(R2) − 〈mσ2 ∗ f,mσ2 ∗ g〉`2(Ḡ)

∣∣∣∣∣ ≤ ‖f‖L1‖g‖L1

(2πσ2)2

(
1 +

(n− 1)σ√
2

)
.

Proof. We will rely on machinery from the theory of tempered distributions throughout the proof, following notation and
results contained in [4, Ch. I, §3]. Let S ⊂ L2(R2) denote the class of real-valued Schwartz functions (a dense subset of
L2(R2)). For concision, write a = mσ2 ∗ f and b = mσ2 ∗ g. Then because f, g are in L1, a, b are in S . Let δx denote
the “Dirac distribution” at x ∈ R2, the tempered distribution defined by δx(h) = h(x) for every h ∈ S . Let ∆n denote the
“Dirac comb” for the grid Ḡ, the tempered distribution defined by

∆n =
∑

(i,j)∈Ḡ

δ(i,j).

Notice that when n is odd, we have Ḡ = (2/(n− 1))Z2, and when n is even we have Ḡ = 1/(n− 1)+ (2/(n− 1))Z2. Then
from the definition of the product, convolution, and Fourier transform of tempered distributions, we have

〈a, b〉`2(Ḡ) = ∆n(ab)

= (∆na)(b)

= (∆̂n ∗ â)ˆ(b) (F.91)

= (∆̂n ∗ â)(b̂)

= ∆̂n(˜̂a ∗ b̂), (F.92)

where ∗ additionally denotes convolution of a tempered distribution with a Schwartz function, for a Schwartz function or
a tempered distribution ψ̂ denotes its Fourier transform, and for a Schwartz function g̃ denotes its reversal g̃(x) = g(−x).
Above, (F.91) applies the convolution formula for tempered distributions (c.f. [4, Proof of Ch. I, Thm. 3.18]), and the remaining

5That is, if n > m, ||| · ||| is the matrix norm on n× n matrices, and if A ∈ Rm×m

|||A||| = |||
[
A 0
0 0

]
|||,

and likewise if m > n. Compare [7, Exercise IV.2.15].
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manipulations are unraveling definitions. The tempered distribution ϕ̂ is defined by the relation ϕ̂(h) = ϕ(ĥ) for all h ∈ S ;
so we have for the Dirac comb and for any h ∈ S

∆̂n(h) =
∑

(i,j)∈Ḡ

δ(i,j)(ĥ) =
∑

(k,l)∈Z2

∫
R2

h(x)e
−i2π

(〈
2x
n−1 ,(k,l)

〉
+1n even

〈
x

n−1 ,(1,1)
〉)

dx

=

(
n− 1

2

)2 ∑
(k,l)∈Z2

∫
R2

h

(
n− 1

2
x

)
e−iπ〈x,1n even(1,1)〉e−i2π〈x,(k,l)〉 dx

=

(
n− 1

2

)2 ∑
(k,l)∈Z2

(
hn−1

2
· e−iπ〈 · ,(1,1)1n even〉

)
ˆ(k, l),

where in the final line h(n−1)/2 denotes the dilation of h (as in the previous line). Now, because h ∈ S , it holds that
h̄(x) = hn−1

2
(x)e−iπ〈x,(1,1)〉 satisfies h̄ ∈ S , because the complex exponential function is infinitely differentiable with

uniformly bounded derivatives on R2. We can thus apply the Poisson summation formula [4, Ch. VII, Cor. 2.6] to obtain from
the previous

∆̂n(h) =

(
n− 1

2

)2 ∑
(k,l)∈Z2

(
hn−1

2
· e−iπ〈 · ,(1,1)1n even〉

)
(k, l)

=

(
n− 1

2

)2 ∑
(k,l)∈Z2

e−iπk1n evene−iπl1n evenhn−1
2

(k, l).

This shows that ∆̂n is equal to a modulated Dirac comb on a rescaled grid. Continuing from (F.92), we therefore have

〈a, b〉`2(Ḡ) =

(
n− 1

2

)2
 ∑
(k,l)∈Z2

e−iπk1n evene−iπl1n even

∫
R2

â(ξ)b̂(ξ + n−1
2 (k, l)) dξ



=

(
n− 1

2

)2


∫
R2

â(ξ)b̂(ξ) dξ +
∑

(k,l)∈Z2

(k,l)6=0

e−iπk1n evene−iπl1n even

∫
R2

â(ξ)b̂(ξ + n−1
2 (k, l)) dξ

 ,

where we applied a change of variables to simplify the convolution integrals to cross-correlations. Now, by Parseval’s theorem
on Schwartz functions, we have

〈a, b〉`2(Ḡ) =

(
n− 1

2

)2

〈a, b〉L2(R2) +

(
n− 1

2

)2 ∑
(k,l)∈Z2

(k,l) 6=0

e−iπk1n evene−iπl1n even

∫
R2

â(ξ)b̂(ξ + n−1
2 (k, l)) dξ, (F.93)

so our task is to bound the residual in the previous expression. We have â = (ϕ⊗2
σ2 )ˆf̂ by the convolution formula for L2

functions (and similarly for b̂), and the Fourier transform of a gaussian is another gaussian, suitably scaled ([4, Theorem 1.13]):

(ϕ⊗2
σ2 )ˆ(ξ) = e−2π2σ2‖ξ‖2

2 =
1

2πσ2
ϕ⊗2
1/(2πσ)2 .

Because f, g ∈ L1(R2), we have ‖f̂‖L∞ ≤ ‖f‖L1 and ‖ĝ‖L∞ ≤ ‖g‖L1 . For the residual term in (F.93), we thus have the
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estimate

(
n− 1

2

)2

∣∣∣∣∣∣∣∣∣
∑

(k,l)∈Z2

(k,l)6=0

e−iπk1n evene−iπl1n even

∫
R2

ĝ(ξ)ĝ(ξ + n−1
2 (k, l)) dξ

∣∣∣∣∣∣∣∣∣
≤ ‖f‖L1‖g‖L1

(
n− 1

4πσ2

)2 ∑
(k,l)∈Z2

(k,l) 6=0

∫
R2

ϕ⊗2
1/(2πσ)2(ξ)ϕ

⊗2
1/(2πσ)2(ξ + n−1

2 (k, l)) dξ, (F.94)

where we applied the triangle inequality. The integral in the previous expression is a convolution integral; as is well-known,
the convolution of two gaussians is another gaussian, with mean equal to the sum of the means of the factors and variance
equal to the sum of the variances. In particular, we have (using reflection symmetry of the gaussian function)∫

R2

ϕ⊗2
1/(2πσ)2(ξ)ϕ

⊗2
1/(2πσ)2(ξ + n−1

2 (k, l)) dξ = ϕ⊗2
2/(2πσ)2

(
n−1
2 (k, l)

)
.

Because the gaussian function factors across components of its argument, we have

∑
(k,l)∈Z2

(k,l)6=0

ϕ⊗2
2/(2πσ)2

(
n−1
2 (k, l)

)
=

(∑
k∈Z

ϕ2/(2πσ)2
(
n−1
2 k

))2

−
(
ϕ2/(2πσ)2(0)

)2
.

Let γ2 = 2/(2πσ2). We have

ϕ2/(2πσ)2
(
n−1
2 k

)
=

1√
2πγ2

e
− 1

2γ2 ((n−1)/2)2k2

=
2

n− 1

1√
2πγ̄2

e
− 1

2γ̄2 k2

=
2

n− 1
ϕγ̄2(k),

where we have defined γ̄2 = γ2/((n− 1)/2)2. Estimating the sum with the integral test estimate gives∑
k∈Z

ϕγ̄2(k) ≤ 2

(
ϕγ̄2(0) +

∫ ∞

0

ϕγ̄2(ξ) dξ
)
− ϕγ̄2(0)

= 1 + ϕγ̄2(0),

so in particular (∑
k∈Z

ϕ2/(2πσ)2
(
n−1
2 k

))2

−
(
ϕ2/(2πσ)2(0)

)2 ≤
(

2

n− 1
+ ϕγ2(0)

)2

−
(
ϕγ2(0)

)2
=

(
2

n− 1

)2

+
4ϕγ2(0)

n− 1
.

With this, (F.94) can be bounded as

(
n− 1

2

)2

∣∣∣∣∣∣∣∣∣
∑

(k,l)∈Z2

(k,l)6=0

e−iπk1n evene−iπl1n even

∫
R2

ĝ(ξ)ĝ(ξ + n−1
2 (k, l)) dξ

∣∣∣∣∣∣∣∣∣ ≤ ‖f‖L1‖g‖L1

(
1

2πσ2

)2(
1 +

(n− 1)σ√
2

)
,

which implies the claim.
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Lemma F.18. Let f, g ∈ L1(R) ∩ L2(R), and for σ2 > 0, let ϕσ2(t) = 1/
√
2πσ2 exp(− 1

2σ2 t
2) denote the one-dimensional

standard gaussian. Then one has

|〈f, g〉L2 − 〈ϕσ2 ∗ f, ϕσ2 ∗ g〉L2 | ≤ σ2‖f ′‖L2(R2)‖g′‖L2(R2).

Proof. One calculates with Plancherel’s theorem and the convolution theorem for the Fourier transform

|〈f, g〉L2 − 〈ϕσ2 ∗ f, ϕσ2 ∗ g〉L2 | =
∣∣∣〈ϕ̂σ2 f̂ , ϕ̂σ2 ĝ〉 − 〈f̂ , ĝ〉

∣∣∣
=
∣∣∣〈(ϕ̂σ2)2f̂ , ĝ〉 − 〈f̂ , ĝ〉

∣∣∣
=
∣∣∣〈((ϕ̂σ2)2 − 1)f̂ , ĝ〉

∣∣∣
=
∣∣∣〈√1− (ϕ̂σ2)2f̂ ,

√
1− (ϕ̂σ2)2ĝ〉

∣∣∣,
where we use that the Fourier transform of a gaussian is another gaussian (and in particular, is positive and bounded by 1):

ϕ̂σ2(ξ) = e−2π2σ2ξ2 .

We thus have, by the triangle inequality,∣∣∣〈√1− (ϕ̂σ2)2f̂ ,
√
1− (ϕ̂σ2)2ĝ〉

∣∣∣ ≤ ∫
R2

|f̂ ĝ|(ξ)(1− e−4π2σ2ξ2) dξ

≤ σ2

∫
R2

|i2πξf̂(ξ)||i2πξĝ(ξ)| dξ

using 1 − e−x ≤ x in the second line. By [4, Theorem §I, 1.8], we have i2πξf̂(ξ) = (f ′)̂ (ξ), whence by the Schwarz
inequality and Parseval’s theorem

σ2

∫
R2

|i2πξf̂(ξ)||i2πξĝ(ξ)| dξ ≤ σ2‖f ′‖L2(R2)‖g′‖L2(R2).

Lemma F.19. For X ∈ L2(R2), consider the rank-one factorization objective

min
u∈L2(R)

1

2
‖X − uu∗‖2L2(R2).

Suppose that there exists a nonzero v ∈ L2(R) such that v∗TXv ≥ 0, where TX : L2(R) → L2(R) denotes the integral
operator u 7→

∫
RX( · , t)u(t) dt associated to X . Then this optimization problem is equivalent to the constrained problem

max
‖u‖L2(R)=1

u∗ (TX + T ∗
X)u;

precisely, if u is an optimal solution to the second problem, then ( 12u
∗(TX + T ∗

X)u)uu∗ is an optimal solution to the first
problem. Here, T ∗

X is the adjoint of TX .

Proof. The problem
min

u∈L2(R)

1

2
‖X − uu∗‖2L2(R2).

is equivalent to the problem
min

‖u‖L2(R)=1, c≥0

1

2
‖X − cuu∗‖2L2(R2).

Expanding the square, the objective in this latter problem satisfies

‖X − cuu∗‖2L2(R2) = ‖X‖2L2(R2) − 2c〈X,uu∗〉L2(R2) + c2,
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since u is constrained to be unit norm. By elementary calculus, the minimization over c in this problem can be cal-
culated in closed form; we find that the optimal c is equal to 〈X,uu∗〉L2(R2) = u∗TXu = 1

2u
∗(TX + T ∗

X)u, where
T ∗
Xu =

∫
RX(s, · )u(s) ds is the adjoint of TX . Hence, the original problem is equivalent to the problem

min
‖u‖L2(R)=1,u∗(TX+T ∗

X)u≥0

1

2

∥∥X − ( 12u
∗(TX + T ∗

X)u)uu∗
∥∥2
L2(R2)

.

Expanding the square as before, this objective satisfies

1

2

∥∥X − ( 12u
∗(TX + T ∗

X)u)uu∗
∥∥2
L2(R2)

= ‖X‖2L2(R2) − ( 12u
∗(TX + T ∗

X)u)2

at any point where u∗(TX + T ∗
X)u ≥ 0; otherwise, the objective equals ‖X‖2L2(R2). Now, if for every nonzero u we have

u∗(TX + T ∗
X)u < 0, then evidently the only optimal solution to the problem is u = 0. If for some nonzero u we have

u∗(TX + T ∗
X)u ≥ 0, then the previous expression shows that the problem is equivalent to

max
‖u‖L2(R)=1

u∗(TX + T ∗
X)u,

which is feasible.

F.4. Background on Image Resampling

We give a precise definition of the vector field representation underlying (F.2) in the discrete setting (F.29). For the template
image X\ ∈ Rm×n, X\ ◦ τν denotes image resampling:

X\ ◦ τν =
∑

(k,l)∈G

(X\)klφ
(
n−1
2

(
τ 0
ν − k11∗))� φ

(
n−1
2

(
τ 1
ν − l11∗)) . (F.95)

Here, φ : R → R is the interpolation kernel; it is applied elementwise, and is independent of the image content and resolution.
Typical choices for this kernel in practice are the bilinear interpolation kernel (which is continuous, but not continuously
differentiable; we adopt it in our experiments) and the cubic convolution interpolation kernel [5] (which is continuously
differentiable, with an absolutely continuous derivative). Both of these kernels are compactly supported, which allows (F.95)
to be computed with cost proportional to the image size. The transformation field τν ∈ Rm×n×2 is defined as

τ 0
ν = cos ν

(
2

n− 1
n− 1

)
1∗ + sin ν 1

(
2

n− 1
n− 1

)∗

(F.96)

τ 1
ν = − sin ν

(
2

n− 1
n− 1

)
1∗ + cos ν 1

(
2

n− 1
n− 1

)∗

(F.97)

where n = [0, 1, . . . , n − 1] (c.f. [30, §A.1] and (F.6)). Note that this definition ensures that the resampled image X\ ◦ τν
corresponds to a rotation of the image content by an angle of ν (with the usual “counterclockwise” positive orientation): in
particular,

(τν)ij =

[
cos ν − sin ν
sin ν cos ν

]∗ [
i
j

]
for (i, j) ∈ G defined in (F.6).

References
[1] Carl Eckart and Gale Young, “The approximation of one matrix by another of lower rank,” Psychometrika, vol. 1, no. 3,

pp. 211–218, Sep. 1936. 8.
[2] L Mirsky, “SYMMETRIC GAUGE FUNCTIONS AND UNITARILY INVARIANT NORMS,” The Quarterly Journal

of Mathematics, vol. 11, no. 1, pp. 50–59, Jan. 1960. 8.
[3] Chandler Davis and W M Kahan, “The rotation of eigenvectors by a perturbation. III,” SIAM journal on numerical

analysis, vol. 7, no. 1, pp. 1–46, Mar. 1970. 27.

61



[4] Elias M Stein and Guido Weiss, Introduction to Fourier Analysis on Euclidean Spaces, en. Princeton University Press,
1971. 15, 57, 58, 60.

[5] R Keys, “Cubic convolution interpolation for digital image processing,” IEEE transactions on acoustics, speech, and
signal processing, vol. 29, no. 6, pp. 1153–1160, Dec. 1981. 61.

[6] J Kuczyński and H Woźniakowski, “Estimating the largest eigenvalue by the power and lanczos algorithms with a
random start,” SIAM Journal on Matrix Analysis and Applications, vol. 13, no. 4, pp. 1094–1122, Oct. 1992. 30.

[7] Rajendra Bhatia, Matrix Analysis. Springer, New York, NY, 1997. 8, 57.
[8] Jor-Ting Chan, Chi-Kwong Li, and Charlies Tu, “A class of unitarily invariant norms on b(h),” en, Proceedings of the

American Mathematical Society. American Mathematical Society, vol. 129, no. 4, pp. 1065–1076, Oct. 2000. 7.
[9] Martin Lefébure and Laurent D Cohen, “Image registration, optical flow and local rigidity,” Journal of mathematical

imaging and vision, vol. 14, no. 2, pp. 131–147, Mar. 2001. 28.
[10] Yurii Nesterov, Introductory Lectures on Convex Optimization: A Basic Course (Applied Optimization), 1st ed. Springer

US, 2004. 29.
[11] Haim Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer, New York, NY, 2011.

30.
[12] Christopher Heil, A Basis Theory Primer: Expanded Edition. Birkhäuser Boston, 2011. 6, 8, 25.
[13] Diederik P Kingma and Jimmy Ba, “Adam: A method for stochastic optimization,” arXiv preprint arXiv:1412.6980,

2014. 1.
[14] Benjamin D Haeffele and Rene Vidal, “Global optimality in tensor factorization, deep learning, and beyond,” Jun. 2015.

arXiv: 1506.07540 [cs.NA]. 20.
[15] Rong Ge, Chi Jin, and Yi Zheng, “No spurious local minima in nonconvex low rank problems: A unified geometric

analysis,” Apr. 2017. arXiv: 1704.00708 [cs.LG]. 20.
[16] Yuanzhi Li, Tengyu Ma, and Hongyang Zhang, “Algorithmic regularization in over-parameterized matrix sensing and

neural networks with quadratic activations,” Dec. 2017. arXiv: 1712.09203 [cs.LG]. 20.
[17] Gary Bécigneul and Octavian-Eugen Ganea, “Riemannian adaptive optimization methods,” arXiv preprint

arXiv:1810.00760, 2018. 1.
[18] Yuejie Chi, Yue M Lu, and Yuxin Chen, “Nonconvex optimization meets Low-Rank matrix factorization: An overview,”

Sep. 2018. arXiv: 1809.09573 [cs.LG]. 19, 20, 29.
[19] Yu Bai, Qijia Jiang, and Ju Sun, “Subgradient descent learns orthogonal dictionaries,” in International Conference on

Learning Representations, 2019. 29.
[20] Dar Gilboa, Sam Buchanan, and John Wright, “Efficient dictionary learning with gradient descent,” in Proceedings

of the 36th International Conference on Machine Learning, Kamalika Chaudhuri and Ruslan Salakhutdinov, Eds.,
ser. Proceedings of Machine Learning Research, vol. 97, Long Beach, California, USA: PMLR, 2019, pp. 2252–2259.
29.

[21] Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, and Timo Aila, “Analyzing and improving
the image quality of stylegan,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
2020, pp. 8110–8119. 5.

[22] Yuqian Zhang, Qing Qu, and John Wright, “From symmetry to geometry: Tractable nonconvex problems,” Jul. 2020.
arXiv: 2007.06753 [cs.LG]. 20, 22, 29.

[23] Zhimin Zhang, Jinpan Fang, Jaduo Lin, Shancheng Zhao, Fengjun Xiao, and Jinming Wen, “Improved upper bound on
the complementary error function,” en, Electronics letters, vol. 56, no. 13, pp. 663–665, Jun. 2020. 45.

[24] Jonathan T. Barron, Ben Mildenhall, Dor Verbin, Pratul P. Srinivasan, and Peter Hedman, “Mip-nerf 360: Unbounded
anti-aliased neural radiance fields,” arXiv, 2021. 1.

[25] Eric R. Chan, Connor Z. Lin, Matthew A. Chan, Koki Nagano, Boxiao Pan, Shalini De Mello, Orazio Gallo, Leonidas
Guibas, Jonathan Tremblay, Sameh Khamis, Tero Karras, and Gordon Wetzstein, “Efficient geometry-aware 3D gener-
ative adversarial networks,” in arXiv, 2021. 4, 5.

62

https://arxiv.org/abs/1506.07540
https://arxiv.org/abs/1704.00708
https://arxiv.org/abs/1712.09203
https://arxiv.org/abs/1809.09573
https://arxiv.org/abs/2007.06753


[26] Chen-Hsuan Lin, Wei-Chiu Ma, Antonio Torralba, and Simon Lucey, “Barf: Bundle-adjusting neural radiance fields,”
in IEEE International Conference on Computer Vision (ICCV), 2021. 3.

[27] Keunhong Park, Utkarsh Sinha, Jonathan T Barron, Sofien Bouaziz, Dan B Goldman, Steven M Seitz, and Ricardo
Martin-Brualla, “Nerfies: Deformable neural radiance fields,” in Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision, 2021, pp. 5865–5874. 3.

[28] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer, High-resolution image syn-
thesis with latent diffusion models, 2021. arXiv: 2112.10752 [cs.CV]. 5.

[29] Dominik Stöger and Mahdi Soltanolkotabi, “Small random initialization is akin to spectral learning: Optimization
and generalization guarantees for overparameterized low-rank matrix reconstruction,” Jun. 2021. arXiv: 2106.15013
[cs.LG]. 19, 20, 29.

[30] Sam Buchanan, Jingkai Yan, Ellie Haber, and John Wright, “Resource-Efficient invariant networks: Exponential gains
by unrolled optimization,” Mar. 2022. arXiv: 2203.05006 [cs.CV]. 61.

[31] Anpei Chen, Zexiang Xu, Andreas Geiger, Jingyi Yu, and Hao Su, “Tensorf: Tensorial radiance fields,” in European
Conference on Computer Vision (ECCV), 2022. 4, 5.

[32] Thomas Müller, Alex Evans, Christoph Schied, and Alexander Keller, “Instant neural graphics primitives with a mul-
tiresolution hash encoding,” arXiv:2201.05989, Jan. 2022. 5.

[33] Tengfei Wang, Bo Zhang, Ting Zhang, Shuyang Gu, Jianmin Bao, Tadas Baltrusaitis, Jingjing Shen, Dong Chen, Fang
Wen, Qifeng Chen, and Baining Guo, Rodin: A generative model for sculpting 3d digital avatars using diffusion, arXiv,
Dec. 2022. 4, 5.

[34] Anpei Chen, Zexiang Xu, Xinyue Wei, Siyu Tang, Hao Su, and Andreas Geiger, “Factor fields: A unified framework
for neural fields and beyond,” arXiv preprint arXiv:2302.01226, 2023. 1.

[35] Sara Fridovich-Keil, Giacomo Meanti, Frederik Warburg, Benjamin Recht, and Angjoo Kanazawa, “K-planes: Explicit
radiance fields in space, time, and appearance,” arXiv preprint arXiv:2301.10241, 2023. 5.

[36] Matthew Tancik, Ethan Weber, Evonne Ng, Ruilong Li, Brent Yi, Justin Kerr, Terrance Wang, Alexander Kristoffersen,
Jake Austin, Kamyar Salahi, Abhik Ahuja, David McAllister, and Angjoo Kanazawa, “Nerfstudio: A modular frame-
work for neural radiance field development,” arXiv preprint arXiv:2302.04264, 2023. 1.

[37] Rachel Ward and Tamara G Kolda, “Convergence of alternating gradient descent for matrix factorization,” May 2023.
arXiv: 2305.06927 [cs.LG]. 20.

[38] Xingyu Xu, Yandi Shen, Yuejie Chi, and Cong Ma, “The power of preconditioning in overparameterized Low-Rank
matrix sensing,” Feb. 2023. arXiv: 2302.01186 [cs.LG]. 20.

63

https://arxiv.org/abs/2112.10752
https://arxiv.org/abs/2106.15013
https://arxiv.org/abs/2106.15013
https://arxiv.org/abs/2203.05006
https://arxiv.org/abs/2305.06927
https://arxiv.org/abs/2302.01186

