
Supplementary Material for Invariant Training 2D-3D Joint Hard Samples for
Few-Shot Point Cloud Recognition

Xuanyu Yi1, Jiajun Deng2, Qianru Sun5, Xian-Sheng Hua3,
Joo-Hwee Lim4, Hanwang Zhang1

1Nanyang Technological University, 2The University of Sydney
3Terminus Group, 4Institute for Infocomm Research, 5Singapore Management University

xuanyu001@e.ntu.edu.sg, jiajun.deng@sydney.edu.au, xshua@outlook.com,

joohwee@i2r.a-star.edu.sg, hanwangzhang@ntu.edu.sg,qianrusun@smu.edu.sg

The Appendix is organized as follows:

• Section A: provides more details about our training
pipeline. Specifically, we detailed the implementation of
2D renderer, CLIP linear adapter as well as the modality
fusion and invariant risk minimization (IRM).

• Section B: gives further discussion on joint hard sample
from probability theory and Venn graph.

• Section C: shows more experiment results and ablation
studies, e.g., augmentations, OHEM strategy and param-
eter sensitivity analysis.

A. Implementation Details
As for 2D branch, We leverage the pretrained 2D knowl-

edge for better point cloud analysis from two perspectives.
1) Beyond directly conducting CLIP visual encoder to pro-
jected depth maps in previous settings [2,23], with the guid-
ance of the frozen pretrained weights, the inputs of this
branch can extensively bridge the modality gap between
regular ones in 2D pretrained datasets and those trans-
formed from point clouds through differentiable renderer.
2) Since fine-tuning the whole CLIP visual backbone would
easily result in over-fitting under few-shot settings, we fol-
lowed the strategy of PointCLIP [23], freezing CLIP’s vi-
sual and textual encoders and optimize the lightweight bot-
tleneck adapter with the cross-entropy loss.
Differentiable Renderer. The renderer R, grounded in al-
pha compositing [17], is tasked with generating a rasterized
object interpretation, utilizing the provided camera param-
eters. Learnable parameters r = {ρ, θ, ϕ} are specifically
harnessed to illustrate the camera’s pose and position, with
ρ representing the distance to the object rendered, θ em-
bodying the azimuth, and ϕ denoting the elevation. We em-
ploy a differentiable renderer to optimize the generation of
pseudo images for improved recognition, which parameter
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Figure 1. The simplified training framework.

Symbol Definition Symbol Definition
x2 / x3 Encoded 2D/3D features y Class label
ze Masked feature in each modality r Threshold parameter
G Gate function λ IRM penalty weight
θ Dummy classifier, calculating gradients E2D/E3D 2D/3D Feature encoder

Table 1. Notation Table

is established through the confidence correlation between
ground-truth label-generated prompt and the zero-shot per-
formance of CLIP on downstream training datasets. For
ModelNet40, Toys4K, and ShapeNet-Core, we utilize a dif-
ferentiable mesh renderer. We maintain a fixed light source
directed towards the object’s center, applying normal vec-
tors for coloration, or default to white when these are not
accessible. As for ScanObjectNN, we deploy a differen-
tiable point cloud renderer with 2048 points. This serves as
a lighter alternative to mesh rendering in instances where
CAD is unavailable or the mesh contains a significant num-
ber of obstructive faces [3].
Multi-view Feature Encoding. We simplify the inter-view
adapter for PointCLIP to further encode the N-view im-
age feature FI with a proposed Multi-View adapter, which
could capture the global and weighted view-wise feature
simultaneously. With such simplification, we reduce the
learnable parameters and avoid post-search. Specifically,
given the N-view grid features FD

v , we first concatenate
along the channel to obtain the global feature, then an ag-
gregation function A(·) is calculated based on the pairwise
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Figure 2. Detailed structure of 2D branch.

affinity matrix T ∈ RN×N with feature cosine similarity.
By aggregating the view-level vectors via A(·), we inte-
grates shape information by reweighted view-wise feature
representation. Finally, the encoding process can be formu-
lated as:

FGlobal = f2
(
ReLU

(
f1

(
concat

(
{FD

v }Nv=1

))))
(1)

FView = ReLU
(
A
(
concat

(
{FD

v }Nv=1

)))
(2)

FI = (1− δ)FGlobal + δFView (3)

, where A(·) is the reweighting function, f1 and f2 are
two-layer MLPs, and δ is mix-up combination coefficient.
Modality Fusion. As an optional enhancement, we intro-
duce a bidirectional attention mechanism, bridging the in-
herent strengths of 2D and 3D modalities to birth an in-
termediate 2.5D representation. This meticulously crafted
modality proficiently harnesses localized nuances from both
2D images and 3D point clouds, imbibing the complemen-
tary details unique to each domain.

In detailed, our architecture is enriched with a bidirec-
tional cross-attention layer [13]. In the forward direction,
point cloud features emerge as the query tensor, with the
image features serving the dual roles of key and value ten-
sors. In stark contrast, the reverse direction sees the image
features donning the mantle of the query, whilst the point
cloud features settle as both the key and value tensors. This
duality in approach guarantees a harmonious balance in the
weighing of features, rooted in mutual affinities. The cul-
mination is a fusion that harmoniously encapsulates the dis-
tinctiveness of both modalities:

Qx3
= x3WQ, Kx2

= x2WK , (4)

Vx2 = x2WV , Xfused = softmax(Qx3K
T
x2
)Vx2 , (5)

Qx2 = x2WQ′ , Kx3 = x3WK′ , (6)

Vx3 = x3WV ′ , Xfused-I = softmax(Qx2K
T
x3
)Vx3 . (7)

The subsequent melding of Xfused and Xfused-I births an
enriched feature set, Xbi-fused, echoing the attributes of both

2D images and 3D point clouds. Note that such fusion-
based modality is only served as a optional regularization
term for calculating modality-wise IRM loss. Therefore,
there is no additional classification head, and thus not lever-
aged during inference for the 2.5D modality environment.
Advanced IRM. In the manuscript, we introduced the
modality-wise IRM to capture the common feature for bet-
ter alignment. For its practical implementation 1, we tran-
sitioned to REx [4], an optimized version especially adept
under co-variate shifts. The MM(Min-Max)-REx is given
by:

MM-REx(θ) = max∑m
e=1 λe=1
λe≥λmin

m∑
e=1

λeLe(θ)

= (1−mλmin)max
e

Le(θ) + λmin

m∑
e=1

Le(θ).

(8)
With goals akin to IRM, REx ensures invariance across

environments in a more efficient and stable manner. We also
leveraged the V-REx variant with additional 2.5D modality:

RV-REx(θ) = βVar({L1(θ), ...,Lm(θ)}) +
m∑
e=1

Le(θ).

(9)
Here, β regulates between reducing average risk and en-
suring risk consistency. Specifically, with β = 0 it aligns
with ERM, while a higher β emphasizes risk equalization.
Specifically, our modality-wise IRM differs from traditional
ones as we utilize contrastive objectives Le, which show
high efficiency for learning discriminative features. After
filtering out conflicting features, we finally regularize E3D,
E2D in the collaborative feature space G(xe), aligning them
with the cross-modality NT-Xent loss Lalign.
Object Retrieval. we leverage LFDA reduction to project
and fuse the encoded feature (w/o the last layer for 3D
branch) as the signature to describe a shape, which is fur-
ther compared through Kd-Tree searching. Figure 3 shows
some qualitative retrieval examples.

B. Discussion On Joint Hard Sample
Probability Theory Perspective. We still refer to the
Bayesian Decomposition introduced in the manuscript:

p(y = c | zc, zd) = p(y = c | zc)·

modality bias︷ ︸︸ ︷
p (zd | y = c, zc)

p (zd | zc)
, (10)

Since the previous modality bias in [12, 20] is revealed in
the same model, it hurts the OOD generalization and de-
creases the performance under distribution shifts. However,

1We discards the dummy classifier w and calculate Min-Max or vari-
ance of risks as the penalty term of IRM.
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Query Top 5 Retrieved objects

Figure 3. Qualitative Examples for 3D Shape Retrieval on Mod-
elNet40: (left): Query objects from the test set. (right): Top 5
matches +for each query, with mistakes highlighted in red.

the modality bias in the proposed 2D-3D ensemble module
is multi-modal and come from different networks, i.e., the
second term in Eq. (10) is only variant across models. In
fact, for a specific modality, some descriptive feature zd is
even beneficial. For example, when p2D (zd | y = c, zc) is
significantly larger than p2D (zd | y ̸= c, zc) for 2D images
from class y = c, such an modality-specific zd is good for
2D classification even if it’s not hold in 3D point clouds,
e.g., fine-grained texture in 2D images disappear in 3D rep-
resentation. Therefore, considering ensemble, instead of re-
moving all the modality bias as [12,20] did, we need to find
(reweight) joint hard samples and only removing the con-
flict while keeping some beneficial zd for each modalities.
A Venn Diagram Perspective. We maintain the assump-
tion that, under few-shot fine-tuning, the primary improve-
ment from the ensemble paradigm arises from the reduc-
tion of conflicting predictions, rather than from enhance-
ments of a specific modality 2. Figure 5 illustrates that the
essence of an effective 2D-3D ensemble lies in minimizing
the high confidence assigned to incorrect labels. In this pur-
suit, our invariant training strategy is anchored on ensuring
the consistency of different (2D-3D) representations, serv-
ing to curtail biases stemming from conflicting modalities.
An alternative method involves calibrating [5] the 2D/3D
logits within each modality, balancing between confidence
avg. and accuracy avg.. However, this technique demands
a robust validation set, which is a rarity in the current 3D
standard datasets. Looking ahead, we intend to juxtapose

2In other words, empirical findings suggest that joint 2D-3D training,
without resorting to either contrastive or distillation methods, does not en-
hance the performance of a particular modality when compared to individ-
ual training in few-shot settings.
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Figure 4. The diagram of multi-modal failure Venn, where Conf
denotes model’s confidence on certain category for a test sample.

and adapt our invariant learning approach with the logit cal-
ibration model, especially within the context of the latest
large-scale 3D datasets [18, 22].

C. More Experiment
C.1. Additional Results on Many-shot ModelNet40

In the main manuscript, we followed [11] and presented
its performance for comparison. It is interesting to discuss
the results under the regular settings as [2], thus we com-
pared INVJOINT with previous state-of-the-art methods un-
der the full training ModelNet40. Note that in this setting,
we use point cloud rendering instead of mesh rendering for
data pre-processing. From Table 5, our method shows com-
parable results with state-of-the-art methods on sufficient
data. This further supports that our proposed framework
can adapt to many-shot settings.

Table 2. Full Training on ModelNet40 with regular setting.

ID Pretrain Methods Full-shot

1

N/A

PointNet++ [9] 90.7
2 PointMLP [6] 94.1
3 PointNeXt [10] 94.0
4 CurveNet [7] 93.9

5

3D

Dgcnn-ocCo [14] 93.0
6 Ponit-BERT [21] 93.2
7 Point-MAE [8] 93.8
8 CrossPoint [1] 91.2

9
2D

P2P [16] 94.0
10 PonitCLIP [23] 90.9
11 INVJoint 93.9

C.2. Additional Results on Data Efficient Learning

We follow [19], evaluating INVJOINT under limited
data scenario. From Table 3, we could find that INVJOINT
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Table 3. Data efficient learning on ModelNet40.

Data percentage w/ PointCMT [19] INVJOINT

2 % 75.2 79.4 (+ 4.2 )
5% 83.5 85.4 (+ 1.9 )

10 % 87.9 89.7 (+ 1.8 )
20 % 89.3 91.3 (+ 2.0 )

Table 4. Different Augmentation Strategies.

ID Augmentation Strategy

A Random translation & Random Scaling
B Jittering & Random Rotation Along Y-axis
C A & RandomInputDropout & Random Rotation
D B & RotatePerturbation
E A & B & RandomInputDropout

consistently retains robust performance and out-performs
PointCMT in all cases.

C.3. Additional Results on Augmentation Strategies

As illustrated in [2], auxiliary factors like different evalu-
ation schemes, data augmentation strategies, and loss func-
tions, which are independent of the model architecture,
make a large difference in point cloud recognition per-
formance. In order to test the robustness of INVJOINT,
we conduct different type of augmentations strategies with
DGCNN [15] as our 3D branch encoder, and report the re-
sults of individual 3D branch as well as the joint prediction
of INVJOINT. In detail, Table 4 summarize the compared
5 types of augmentation strategies. We could find from
Figure 5 that though the choice of augmentation strategy
greatly influences the performance of 3D branch in few-shot
settings, the joint prediction maintains encouraging and sta-
ble enhancement thanks to the collaborative joint training.

C.4. Parameter Sensitivity Analysis

The following sensitivity analyses were conducted in
ModelNet40 with 16-shot settings. (1) We observed the op-
timal λ in Eq.5. The Top-1 Accuracy is 87.32 / 87.90 / 88.94
/ 86.23 % (λ = 0.1 / 1 / 5 / 10). (2) Keeping λ= 5, the Top-1
Accuracy is 85.47 / 88.94 / 88.65 / 84.10 % with an added
weight ratios (α = 0.1 / 1 / 5 / 10) between LCE and Lalign.

C.5. Additional Results on HEM methods in Step 1

The GMM 3 module is only used for selecting hard sam-
ples in each modality and is NOT our technical contri-
bution. Therefore, we further replace it with other loss

3GMM-based loss discrimination has been widely adopted to identify
outliers in de-noising and hard example mining because of its efficiency
and high compatibility.

Figure 5. Performances with different augmentation strategy on
16-shot ModelNet40. Accuracy of 3D branch (Blue) and IN-
VJOINT (Orange) are reported.

Table 5. Few-shot performance on ModelNet40 with different
OHEM methods.

Method OHEM 1-shot 2-shot 4-shot 8-shot 16-shot

PointCLIP [23] - 52.96 66.73 74.47 80.96 85.45
Crosspoint [1] - 48.24 59.95 64.25 75.75 79.70

INVJOINT GMM 68.85 70.24 78.95 82.85 88.94
INVJOINT BMM 70.12 71.30 76.08 82.63 87.15

Table 6. The enhancement ability of 2D branch in INVJOINT.

Methods Before Fuse After Fuse Gain

PointNet++ [9] 80.2 85.1 4.9
CrossPoint [1] 79.7 83.2 3.5
DGCNN [15] 81.4 89.0 7.6
CurveNet [7] 81.8 87.3 5.5

discrimination and OHEM (online hard example mining)
methods for ablation. Specifically in Table 5, if we re-
place our GMM module with Beta Mixture Model (BMM)
in ModelNet40 with different few-shot settings, INVJOINT
can still achieve comparative results and largely outperform
other methods in different few-shot settings.

C.6. Additional Results on 3D Backbones

To verify the complementarity and the coordination
of 3D and 2D, we further aggregate the fine-tuned 16-
shot 2D branch on ModelNet40 with different 16-shot
3D backbones, including PointNet++ [9], CrossPoint [1],
DGCNN [15], CurveNet [7]. Table 6 illustrates that the en-
hancement ability of 2D branch in INVJOINT with the alle-
viation of modality conflict.
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