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A. More Experimental Results

A.1. Results on VOC 2012

In Tab. 1, we present a comprehensive comparison of
our proposed method with existing arts with single model
on the VOC 2012 dataset. Our method achieves a state-
of-art CorLoc of 72.6%, and obtains compatible results on
mAP (Ours: 53.5% vs. SLV: 53.6%). These results further
validate the effectiveness of method.

A.2. Inference Strategy with WET

In Tab. 2, we compare different inference strategies
with WET scores, where CLS represents the classification
branch. We first follow the previous work to only use the
basic WSOD module for inference, i.e., averaging the score
of K OICs and CLS branch, obtaining an mAP of 57.2%
(Line 1). Then, we add the obtained WET score during the
averaging operation, and the mAP is boosted to 57.3% (Line
2), justifying the effectiveness of WET. To better utilize the
detection capability of WET, we further apply a weighted
ensemble strategy and obtain the best performance 57.4%
mAP (Line 3). The strategy can be viewed as a two-step av-
erage of different classification results (1st for OICs, 2nd for
OIC-avg & CLS): xinf = 1
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1

K+1 (
∑K

k=1 x
OICk + xcls) +

xwet), where xcls represents the results of classification
branch in the R-CNN head.

Additionally, one may be concerned that the inference
process involving both the basic WSOD module and the
whole WET model will cost time. To this end, we apply
two strategies to speed up the inference procedure. One is
to directly use WET network for inference, which can also
achieve the best performance 57.4% mAP (Line 4). The
other is to discard the feature extractor in WET model dur-
ing inference (Line 5). In other words, proposal features
obtained from the basic WSOD module are directly fed
into the CLS branch in the WET model to obtain proposal
scores. These WET scores then participate in the averag-

Methods mAP (%) CorLoc (%)
OICR [6] 37.9 52.1
PCL [5] 40.6 63.2
C-MIL [7] 46.7 67.4
Yang et al. [9] 46.8 69.5
WSOD2 [10] 47.2 71.9
SLV [1] 49.2 69.2
C-MIDN [8] 50.2 71.2
MIST [4] 52.1 70.9
CASD [3] 53.6 72.3
Ours 53.5 72.6

Table 1. Performance comparison among the state-of-the-art meth-
ods on PASCAL VOC 2012.

Inference Strategy mAP (%)

Basic WSOD module 57.2
Basic WSOD + WET score (average) 57.3
Basic WSOD + WET score (weighted) 57.4
WET score 57.4
Basic WSOD + CLS branch in WET 57.3

Table 2. Ablative experiments on the effects of different inference
strategies. The models are evaluated on PASCAL VOC 2007.

Inference Strategy mAP (%)

Classification head 56.9
RoI layer + Classification head 56.5
Whole structure 57.4

Table 3. Ablative experiments on the effects of different structures
of WET. The models are evaluated on PASCAL VOC 2007.

ing operation as mentioned above. This strategy leads to a
57.3% mAP, 0.2% superior to only using the WSOD mod-
ule. These results demonstrate that our framework can ob-
tain high performance with negligible extra inference time.
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γ 0.2 0.4 0.6 0.8 1.0
mAP (%) 57.2 57.4 57.2 57.2 57.2

Table 4. Ablative experiments on the effects of different γ. The
models are evaluated on PASCAL VOC2007.

EMA rate α 0.99 0.999 0.9999
mAP (%) 55.2 57.4 56.4

Table 5. Ablative experiments on the effects of different EMA
rates. The models are evaluated on PASCAL VOC2007.

A.3. Effect of different structure of WET

We conduct experiments using different structures of
WET, as shown in Tab. 3. We adopt three strategies to con-
struct WET: Only containing a classification head (Line 1),
containing RoI pooling layer and classification head (Line
2), and containing the whole structure (including feature
extractor and classification head) (Line 3). We find that
the third strategy achieves the best results, since the over-
all structure can benefit from the EMA strategy to reduce
the adverse effects of noisy pseudo labels during training.

A.4. Effect of confidence rate γ

We conduct experiments using various γ when generat-
ing the confidence of seeds. The results are shown in Tab. 4.
The performance is insensitive to the selection of values
near the optimal values we have chosen (γ = 0.4).

A.5. Effect of EMA rate

We conduct experiments using various EMA rate α. The
results are shown in Tab. 5, which indicates that α = 0.999
is the optimal rate. When the EMA rate is small, the stu-
dent (Basic WSOD module) contributes more to the teacher
(WET model) for each iteration, thus the teacher is likely
to suffer from the negative effects brought from the noisy
pseudo-labels. When the EMA rate is high, the next model
weight of the teacher will be mostly from the previous
weight of itself, thus make the teacher grow overly slow.
Therefore, we choose α = 0.999 in our method.

A.6. Analysis on MIDN module and OIR1 branch

Finally, to validate the effectiveness of CRD algorithm,
we conduct experiments to evaluate the MIDN module and
the OIR1 branch. Considering the purpose of CRD algo-
rithm to adjust the rank distribution of MIDN module for
accurate proposals and the top-scoring strategy with MIDN
scores for pseudo labeling, we use mAcc@1 under two
strict IoU threholds, (i.e., 0.75 and 0.85), to demonstrate the
improvements of MIDN by introducing our proposed CBL.
Specifically, for each existing category, we select the top-
1 proposal according to the MIDN scores and calculate its
overlaps with the ground-truth boxes. The proposal will be
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Figure 1. Evaluation results for MIDN module and OIR1 branch
in different iterations. Bars in red and blue represent our CBL
framework and the baseline module, respectively.

regarded as true positive if the maximum overlap is larger
than a threshold. Finally, we calculate the Acc@1 for all
categories and average them to obtain mAcc@1.

The evaluation results of MIDN module in different it-
erations are shown in the first two images in Fig. 1. The
results show that the MIDN module in our framework out-
performs that in the baseline module in most cases. Fur-
thermore, the performance gains are more pronounced dur-
ing the early stage of training with a loose threshold (0.75),
while more evident during the late stage of training with a
tight threshold (0.85). This attributes to the linear growth
strategy of the overlap threshold in CRD algorithm. We
also conduct experiments on the first OIR branch (OIR1) to
show the influence of CRD algorithm on pseudo labeling,
since the pseudo labels of OIR1 are generated according to
the MIDN scores. The results are shown in the third im-
age in Fig. 1. Compared with the baseline module, OIR1 in
our framework achieves better mAP performance to a great
extend in all cases.

Overall, with higher mAcc@1 on MIDN module, more
seeds close to the ground-truth boxes are successfully cho-
sen in our CBL framework, thus helping generate more
high-quality pseudo labels. These accurate pseudo labels
will then benefit the training procedure of the OIR1, hence
further improving the performance of the whole framework.

A.7. Additional visualization results

Fig. 2 compares the detection results of the baseline
model and ours. Benefiting from the cyclic-bootstrap pro-
cedure, our model can handle a broader set of inaccu-
rate scoring-assignment cases, including detecting only dis-
criminative parts (part domination), containing background,
grouping objects, and missing objects.

Additional visualization results on VOC2007 dataset are
shown in Fig. 3, which demonstrates the detection capabil-
ity of our method to accurately detect multiple objects (e.g.,
“cow”, “plane”) in different scenes.
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Figure 2. Comparison of baseline model and our model. Left: Baseline detection; Right: Our detection. Our method can handle a broader
set of inaccurate scoring-assignment cases in baseline detections.

B. Details of the CBL framework

B.1. Softmax operation in MIDN module

In MIDN module, the softmax operations are different in
the classification branch and detection branch, as shown in
Eq.1:
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B.2. Loss for the online instance classifiers

For each online instance classifier, we use weighted
cross-entropy loss for training following [6]:

Loic = − 1

|R|

|R|∑
i=1

C+1∑
c=1

wiyc,ilogxc,i, (2)

where xc,i and yc,i represent the predicted OIC score and
pseudo label of proposal i on class c, respectively. wi rep-
resents the loss weight of proposal i, denoted as the corre-
sponding score of its nearest positive seed. |R| and C rep-
resent the number of proposals and categories, respectively.

B.3. Details of the R-CNN head

For each obtained positive seed, we seek all its neighbor
proposals whose overlaps with the seed are greater than 0.5.



Figure 3. Additional visualization resultson VOC2007 dataset. Boxes in red and yellow represent ground-truth boxes and successful
predictions, respectively.

These neighbor proposals are assigned the same label as
their corresponding seed. We regard the selected seeds and
their neighbor proposals as positive samples Rpos, while re-
garding other proposals as negative ones Rneg .

For the classification branch, we generate the
hard pseudo labels for each proposal i: ui =
[u1,i, u2,i, · · · , uC+1,i]. For negative samples, we set
uC+1,i = 1. Additionally, we ignore the proposals during
training whose maximum overlaps with all the seeds are
smaller than 0.1. We utilize the weighted cross-entropy
loss for training following [6]:

Lcls = − 1

|R|

|R|∑
i=1

C+1∑
c=1

wiuc,ilogx
cls
c,i , (3)

where xcls represents the outputs of the classification
branch and wi represents the loss weight of proposal Ri

defined in [6]. We set wi = 0 for ignored proposal.

For the regression branch, we generate the regression
label vi = (vx, vy, vw, vh) following [2]. A weighted

smooth-L1 loss is utilized for training:

Lreg = − 1

|R|

|R|∑
i=1

C∑
c=1

I(uc,i = 1)wi · smoothL1(t
c
i , vi),

(4)
where t ∈ R(4C)×|R| represents the outputs of the regres-
sion branch. Finally, the loss for the r-cnn head Lrcnn is
obtained by combining these two losses.

C. Discussion of the supervision on MIDN
Generating one-hot (hard) labels for each proposal is a

more intuitive way to supervise MIDN. However, it has
two main disadvantages. On one hand, assigning ‘1’ (fore-
ground) to multiple proposals in the same category will ex-
ceed the MIL limitation, where their summation needs to be
restricted in [0, 1]. On the other hand, hard labels help cor-
rectly classify proposals, but are useless in assigning high
classification scores to proposals with more accurate lo-
cation. Compared with directly assigning hard labels, the
CRD algorithm constraints MIDN’s prediction to be con-
sistent with the more reliable WET model in the rank dis-
tribution of neighboring positive proposals, thus benefiting
the scoring assignment of MIDN among them.
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