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This supplementary document provides additional de-
tails and experimental results of our geometry integration
mechanism. Section A presents the definitions of 3D evalu-
ation metrics. Section B details the computation of geomet-
ric priors. Details of network implementation are given in
Section C. Section D shows additional geometry measures,
ablation study, analysis, and visualizations.

A. Evaluation metrics
Table S1 presents the definitions of 3D evaluation met-

rics in Atlas [4], i.e. accuracy (acc), completeness (comp),
precision (prec), recall, and F-score. For accuracy and com-
pleteness, lower is better. Conversely, for the remaining
metrics, higher values correspond to better performance.

B. Geometric priors
Geometric priors used in our method are introduced in

this section.
Viewing direction vi: The normalized unit direction from
the camera origin to the 3D voxel. In our method, it is en-
coded similarly to NeRF [3], i.e.,

γ(vi) =(sin(20πvi), cos(20πvi), . . . ,

sin(2L−1πvi), cos(2L−1πvi))
(S-1)

where γ(·) is applied to each dimension of vi, and L = 4 in
our experiments.
Projected normal ni: The vector mapped from the 2D nor-
mal according to perspective projection.
Viewing angle θi: The absolute value of the cosine similar-
ity between the projected normal and the viewing direction.
Projected depth zi: The perpendicular distance from the
3D voxel to the camera center. Our method divides the dis-
tance by the maximum depth Dmax = 3m. The projected
depth is also encoded using Eq. S-1 with L = 4.
Relative pose distance: The pose distance between two
cameras. The overall pose distance between camera j and

3D Metrics
Acc meanp∈P (minp∗∈P∗ ||p− p∗||)
Comp meanp∗∈P∗(minp∈P ||p− p∗||)
Prec meanp∈P (minp∗∈P∗ ||p− p∗|| < .05)
Recall meanp∗∈P∗(minp∈P ||p− p∗|| < .05)
F-score 2×Prec×Recall

Prec+Recall
Table S1. Definitions of 3D metrics. p and p∗ are the predicted
and ground truth point clouds.

camera k is calculated by

rpjk =

√
||tjk||2 +

2

3
tr(I− Rjk)

=
√
rp(tjk)2 + rp(Rjk)2

(S-2)

where tjk is the relative translation matrix, Rjk is the rel-
ative rotation matrix. rp(tjk) denotes the pose translation
distance. rp(Rjk) denotes the pose rotation distance. tr is
the matrix trace operator. In our proposed geometry-guided
adaptive feature fusion, rp(Rjk), rp(tjk), and rpjk are all
used as priors to learn the weight function.
Projective occupancy: In a camera coordinate frame, the
projective TSDF Sp(p) of a voxel is the truncated signed
distance between the voxel p and the nearest surface. Pro-
jective occupancy O(p) and visibility V (p) are functions of
projective TSDF, which can be written by

O(p) = [|Sp(p)| < t] ≡

{
1, |Sp(p)| < t

0, |Sp(p)| ≥ t

V (p) = [Sp(p) ≥ 0] ≡

{
1, Sp(p) ≥ 0

0, Sp(p) < 0

(S-3)

where t is the truncation distance.



Prec ↑ Recall ↑ F-score↑
NeuralRecon + G2FL (w/o) 0.697 0.530 0.600
NeuralRecon + G2FL(w) 0.701 0.530 0.602

Table S2. Ablation study for the encoding function defined in Eq.
S-1. w/o and w mean without and with the encoding function re-
spectively.

P11.25 ↑ R11.25 ↑ P22.5 ↑ R22.5 ↑ P30 ↑ R30 ↑
NeuralRecon 0.501 0.418 0.697 0.608 0.764 0.679

NeuralRecon + ours 0.581 0.504 0.753 0.680 0.809 0.742
VoRTX 0.515 0.479 0.698 0.663 0.757 0.726

VoRTX + ours 0.552 0.528 0.719 0.701 0.777 0.761
Table S3. 3D normal evaluation.

C. Implementation details

In our geometry-guided feature learning, the MLP is
composed of 2 linear layers and 2 ReLUs, with channel
sizes [37, 32, 1]. The 37 input channels consist of 3× 8 en-
coded viewing directions, 1×8 encoded projected depths, 3
viewing directions, 1 projected depth, and 1 viewing angle.
The channel size of linear layer in T1 is [Cv + 1, Cv]. The
linear layer in T2 has [Cv + 3, Cv] channels.

In our geometry-guided adaptive feature fusion, the MLP
includes 3 linear layers, with two ReLUs following the first
two linear layers. The channel sizes are [81, 32, 32, 9],
where the input channel 81 is composed of 2 × 9 for the
mean and standard deviation of the attention matrix, 6 ×
9 for the mean and standard deviation of the relative pose
distance, and 1 × 9 for the occlusion prior. The channel of
the linear layer for projective occupancy prediction is [Cv ,
1].

In the ablation study for our consistent 3D normal
loss, the Gaussian function in Table 5e is defined by
exp(− (s2d3d(p)−1)2

σ2 ), in which σ2 = 0.5.

D. Additional results

3D normal estimation. To further demonstrate that our ap-
proach can reconstruct more accurate geometry, this work
also provides fine-grained geometry measures, i.e. precision
Pτ and recall Rτ of the 3D normal, see Eq. S-4 and Eq. S-
5. The 3D vertex normals are generated from meshes, and
evaluated following the metrics in [1]. The experimental
results in Table S3 demonstrate that our proposed geometry
integration mechanism enhances the normal performance,
thereby contributing to the reconstruction of more precise
and accurate geometry.

Pτ = meanp∈P (angle(p, p∗) < τ),

p∗ = minp∗∈P∗ ||p− p∗||
(S-4)

Rτ = meanp∗∈P∗(angle(p, p∗) < τ),

p = minp∈P ||p− p∗||
(S-5)

where p and p∗ are the predicted and ground truth points.
angle is computed between ground truth and prediction. τ
is angle threshold, τ ∈ {11.25◦, 22.5◦, 30◦}.
Additional ablation study. Table S2 validates the ef-
fectiveness of the NeRF-like encoding function in our
geometry-guided feature learning. As can be seen, with the
encoding defined in Eq. S-1, precision and F-score increase
by 0.4% and 0.2% respectively.
Analysis for G2AFF. The visualization of weight learning
in our geometry-guided adaptive feature fusion is presented
in Figure S1. In Sample 1, the highest weight is assigned
to the view with the largest standard deviations of attention
weight and relative pose distance. In Sample 2, due to oc-
clusion in View 3 and View 4, the voxel weights in these two
views are very low. Sample 3 assigns a higher weight to the
view with a larger standard deviation of relative pose dis-
tance, while Sample 4 gives more attention to the view with
a larger standard deviation of attention weight. In conclu-
sion, our G2AFF is able to learn appropriate weights from
the 3D geometry.
Additional qualitative results on ScanNet [2]. More vi-
sualizations on ScanNet are shown in Figure S2. Compared
to SOTA methods (i.e. SimpleRecon [5], NeuralRecon [9],
and VoRTX [7]), NeuralRecon + ours is able to reconstruct
better meshes. Compared to VoRTX, VoRTX + ours can re-
call more regions and generate flatter meshes, e.g. for walls.
It can be demonstrated that our geometry integration mech-
anism is helpful and can be plugged into both online (e.g.
NeuralRecon) and offline (e.g. VoRTX) volumetric meth-
ods.
Qualitative results on 7-Scenes [6] and TUM RGB-D [8].
Qualitative results on 7-Scenes and TUM RGB-D datasets
are given in Figure S3 and Figure S4. Compared to Neu-
ralRecon and VoRTX, our proposed geometry integration
mechanism can recall more meshes and reconstruct flatter
planes, e.g. for the wall and floor.
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Figure S2. Qualitative results on ScanNet.



Figure S3. Qualitative results on 7-Scenes.

Figure S4. Qualitative results on TUM RGB-D.


