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The content of this supplementary material is organized
as follows:

• Settings for synthesizing test images in Sec. s1.

• Inference efficiency comparison in Sec. s2.

• More qualitative comparison in Sec. s3.

s1. Details of Test Degradation Settings
During test, Synthetic datasets are built upon the in-the-

wild version of FFHQ [3] and CelebA [7], where 1,000
high-quality images are extracted from each dataset, and
faces occupy around 10% areas of the whole image on av-
erage. With the high-quality images, we first construct two
test datasets whose degradations are independent and iden-
tically distributed as the training set, which are denoted by
FFHQiid and CelebAiid , respectively. For evaluating the
generalization ability on out-of-distribution degradations,
we further construct FFHQood and CelebAood by changing
the parameters of the degradation model, e.g., Gaussian blur
→ motion blur, Gaussian/Poisson noise → Speckle noise.
Specifically, the motion blur kernels are from [1,4,6]. More
details are shown in Tab. s1. Note that the IID degrada-
tion operates two rounds as shown in Tab. s1, and in each
round, the operations follow the column order of Tab. s1,
i.e., blurring, downsampling, adding noise, and JPEG com-
pression. On the contrary, the OOD degradation has only a
single pass, and we use degradations different from the IID
ones.

s2. Inference Efficiency
In order to evaluate the efficiency of our methods com-

pared to ReDegNet [5], we evaluate the inference time (in-
cluding the fine-tuning steps) on the RF200 dataset. The
results are shown in Tab. s2, one can see that ReDegNet [5]
fine-tunes the degradation extraction model for 100 steps

and the super-resolution model for 1,000 steps, while our
method requires only 1 fine-tuning step, which is much
more efficient than ReDegNet [5].

s3. Qualitative Comparison
To show the effectiveness of the proposed MetaF2N,

we compare with several state-of-the-art blind image SR
methods, including ESRGAN [10], RealSR [2], Real-
ESRGAN [9], BSRGAN [12], MM-RealSR [8], and Re-
DegNet [5]. Among them, ESRGAN [10] and RealSR [2]
are trained with simple degradation models, which lead to
unsatisfactory performance under more complex and real-
istic degradations. Therefore, they are not present in the
qualitative comparison for a better view of comparison with
other methods.

s3.1. More Qualitative Comparison

Limited by the space of the main manuscript, we put
more qualitative comparison results here with real word
data in Fig. s1 and synthesized data in Fig. s2. As the fig-
ures show, our results are clearer and contain more photo-
realistic textures, which can be ascribed to the effectiveness
of our image-specific fine-tuning scheme.

s3.2. Qualitative Comparison of Ablation Studies

MaskNet Configuration. In the supplementary material,
the qualitative comparison results of our ablation studies are
presented in Fig. s3. With the visual comparison of the ab-
lation study on the training scheme regarding data config-
uration and the MaskNet, it indicates that the deployment
of MaskNet brings considerable improvements in detail ex-
pression, and utilizing the low-quality face image as a ref-
erence is also useful for our task.

Fine-Tune Steps of Inner Loop. Besides, the visual com-
parison between different fine-tuning steps of our method is

mailto:cszcyin@outlook.com
mailto:csmliu@outlook.com
mailto:csxmli@gmail.com
mailto:wmzuo@hit.edu.cn


also given in Fig. s4. With the fine-tuning steps increasing,
the result is slightly improved in detail and tends to be sta-
ble. However, because of the color prediction error caused
by GPEN [11], more fine-tuning steps may lead to color
deviation phenomena.

Replacement of Generated Faces. Moreover, we also try
to replace the face region of our restoration result with the
faces recovered by GPEN [11] because 1) the faces have al-
ready been generated by GPEN for fine-tuning, and 2) the
faces recovered by GPEN usually have higher quality. The
quantitative comparison is shown in Tab. s3, while the qual-
itative comparison is shown in Fig. s5.
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Table s1: More details about our degradation setting during test.

Phase
Blur Downsample Noise JPEG

Type PDF σ Kernel Size Type Scale Type σ / Scale Quality Factor

IID (first round) Gaussian Blur

1
N

exp(− 1
2
CTΣC)

[0.2, 3] [7, 21]
bicubic

[0.67, 6.67]
Gaussian [1, 30]

[35, 95]1
N

exp(− 1
2
CTΣC)β bilinear

1
N

1
1+(CTΣC)β

area Poission [0.05, 3]

IID (second round) Gaussian Blur

1
N

exp(− 1
2
CTΣC)

[0.2, 1.5] [7, 21]
bicubic

[0.83, 8.83]
Gaussian [1, 25]

[35, 95]1
N

exp(− 1
2
CTΣC)β bilinear

1
N

1
1+(CTΣC)β

area Poission [0.05, 2.5]

OOD Motion Blur - - [7, 35] nearest [0.5, 10] Speckle - [30, 100]

Table s2: The efficiency comparison during inference be-
tween our MetaF2N and ReDegNet [5].

Methods Fine-tuning Steps Time

ReDegNet 100+1,000 ∼15min
Ours 1 1.80s
Ours 10 3.67s
Ours 20 5.86s

Table s3: Quantitative comparison on synthetic datasets
with independent and identically distributed degradations
as the training set, out-of-distribution degradations and the
collected real-world dataset RF200. Note that the results are
both produced by MetaF2N with one-step fine-tuning. The
best results are highlighted by bold.

Methods w/o GPEN Faces w/ GPEN Faces

FFHQiid

PSNR↑ 26.13 25.74
LPIPS↓ 0.281 0.275

FID↓ 45.22 40.78
NIQE↓ 3.81 3.57

CelebAiid

PSNR↑ 25.63 25.33
LPIPS↓ 0.289 0.284

FID↓ 45.72 40.64
NIQE↓ 3.97 3.79

FFHQood

PSNR↑ 25.49 25.17
LPIPS↓ 0.284 0.277

FID↓ 45.07 41.22
NIQE↓ 4.22 3.83

CelebAood

PSNR↑ 24.87 24.63
LPIPS↓ 0.297 0.292

FID↓ 47.03 41.76
NIQE↓ 4.32 4.05

RF200
KID↓ 21.2 20.08

NIQE↓ 3.03 3.02



Real-world LR Real-ESRGAN [9] BSRGAN [12] MM-RealSR [8] ReDegNet [5] ReDegNet† [5] Ours
Figure s1: More visual comparison against state-of-the-art blind SR methods on real-world low-quality images in our RF200
dataset. ReDegNet† means that model is fine-tuned for each image following the official configurations of ReDegNet [5].



Synthetic LR Real-ESRGAN [9] BSRGAN [12] MM-RealSR [8] ReDegNet [5] Ours Ground-truth
Figure s2: Visual comparison against state-of-the-art blind SR methods on synthetic datasets. The first five low quality
images are synthesized with degradation independent and identically distributed as the training set, while the other low
quality images are synthesized with out of distribution degradation. Note that the results of Ours are produced by MetaF2N
with one-step fine-tuning. Please zoom in for better observation.



Synthetic LR Trained with GT Trained with GPEN [11] MaskNetNR Ours Ground-truth
Figure s3: Visual comparison of ablation study on the training scheme regarding data configuration and the MaskNet with
synthesized data.

Real-world LR Ours (1) Ours (10) Ours (20)
Figure s4: Visual comparison of the results with different fine-tuning steps of our model.



Real-world LR Ours (1) w/o GPEN face Ours (1) w/ GPEN face
Figure s5: Visual comparison with the replacement of GPEN [11] faces.


