Metric3D: Towards Zero-shot Metric 3D Prediction from A Single Image
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1. Details for Models

In our work, our encoder employs the convnext-large
network, whose pretrained weight is from the official re-
leased ImageNet-22k pretraining. The decoder follows the
[26]. The depth range is [0.3m, 150m]. We establish 4 flip
connections from different levels of encoder blocks to the
decoder to merge more low-level features.

2. Datasets and Training and Testing

We collect over 8M data from 11 public datasets for
training. Dataset list is shown in 1. The autonomous
driving datasets, including DDAD [ 1], Lyft [12], Driving-
Stereo [23], Argoverse2 [21], DSEC [9], and Pandaset [22],
have provided LiDar and camera intrinsic and extrinsic pa-
rameters. We project the LiDar to camera image planes
to obtain ground-truth depths. In contrast, Cityscapes [6],
DIML [5], and UASOL [I] do not have ground truth
depth, but are with calibrated stereo images. We use draft-
stereo [14] to achieve pseudo-ground truth. Mapillary
PSD [15] dataset provides paired RGB-D, but the depth
maps are achieved from a structure-from-motion method.
The camera intrinsic parameters are estimated from the
SfM. We believe that such achieved metric information is
very noisy, so we do not enforce learning-metric-depth loss
on this data, i.e. L4, to reduce the effect from noises.
For the Taskonomy [28] dataset, we follow LeReS [25] to
obtain the instance planes, which are employed in the pair-
wise normal regression loss. During training, we employ
the training strategy from [24] to balance all datasets in
each training batch.

The testing data information is listed in 1. All of them
are captured by high-quality sensors. In our testing, we em-
ploy their provided camera intrinsic parameters to perform
our proposed canonical space transformation. Datasets have
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Table 1 — Training and testing datasets used in experiments.
‘ # Cam.

Datasets Scenes Label | Size
Training Data

DDAD [11] Outdoor | LiDar | ~80K 36+

Lyft [12] Outdoor | LiDar | ~50K 6+

Driving Stereo (DS) [23] | Outdoor | Stereo’ | ~181K 1
DIML [5] Outdoor | Stereo’ | ~122K | 10
Arogoverse2 [21] Outdoor | LiDar | ~3515K | 6+
Cityscapes [0] Outdoor | Stereo’ | ~170K 1

DSEC [9]
Mapillary PSD [15]

Outdoor | LiDar | ~26K 1
Outdoor | SfM* 750K 1000+

Pandaset [22] Outdoor | LiDar | ~48K 6

UASOL [1] Outdoor | Stereo’ | ~137K | 1

Taskonomy [28] Indoor | LiDar | ~4M ~1M
Testing Data

NYU [18] Indoor Kinect | 654

KITTI[10] Outdoor | LiDar | 652

ScanNet [7] Indoor Kinect | 700

NuScenes (NS) [4] Outdoor | LiDar | 10K
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ETH3D [16] Outdoor | LiDar | 431
DIODE [20] In/Out LiDar | 771
TScenes [17] Indoor Kinect | 17k
iBims-1 [13] Indoor LiDar | 100

T ‘Stereo’: we use RaftStereo [14] to retrieve the pseudo ground truth.
# SfM’: pseudo ground truth is retrieved by structure from motion.

different focal lengths.

3. Details for Some Experiments

Evaluation of zero-shot 3D scene reconstruction. In this
experiment, we use all methods’ released models to predict
each frame’s depth and use the ground truth pose and cam-
era intrinsic parameters to reconstruct point clouds. When
evaluating the reconstructed point cloud, we employ the it-
erative closest point (ICP) [2] algorithm to match the pre-
dicted point clouds with ground truth by a pose transforma-
tion matrix. Finally, we evaluate the Chamfer 11 distance
and F-score on the point cloud.

Reconstruction of in-the-wild scenes. We collect several
photos from Flickr. From their associated camera metadata,
we can obtain the focal length f and the pixel size J. Ac-



cording to /s, we can obtain the pixel-represented focal
length for 3D reconstruction and achieve the metric infor-
mation. We use meshlab software to measure some struc-
tures’ size on point clouds. More visual results are shown
in 3.

Generalization of metric depth estimation. To evaluate
our method’s robustness of metric recovery, we test on 8
zero-shot datasets, i.e. NYU, KITTI, DIODE (indoor and
outdoor parts), ETH3D, iBims-1, NuScenes, and 7Scenes.
Details are reported in Tab. 1. We use the officially provided
focal length to predict the metric depths. All benchmarks
use the same depth model for evaluation. We don’t perform
any scale alignment.

Evaluation on affine-invariant depth benchmarks. We
follow existing affine-invariant depth estimation methods to
evaluate 5 zero-shot datasets. Before evaluation, we em-
ploy the least square fitting to align the scale and shift with
ground truth [26]. Previous methods’ performance is cited
from their papers.

Dense-SLAM Mapping. This experiment is conducted on
the KITTI odometry benchmark. We use our model to pre-
dict metric depths, and then naively input them to the Droid-
SLAM system as an initial depth. We do not perform any
finetuning but directly run their released codes on KITTIL
With Droid-SLAM predicted poses, we unproject depths to
the 3D point clouds and fuse them together to achieve dense
metric mapping. More qualitative results are shown in 2.

4. More Visual Results

Reconstructing 360°NuScenes scenes.  Current au-
tonomous driving cars are equipped with several pin-hole
cameras to capture 360°views. Capturing the surround-
view depth is important for autonomous driving. We sam-
pled some scenes from the testing data of NuScenes. With
our depth model, we can obtain the metric depths for 6-ring
cameras. With the provided camera intrinsic and extrinsic
parameters, we unproject the depths to the 3D point cloud
and merge all views together. See 4 for details. Note that
6-ring cameras have different camera intrinsic parameters.
We can observe that all views’ point clouds can be fused
together consistently.

Reconstructing 360°DDAD scenes. In our provided sup-
plementary videos, we show the reconstructed point cloud
of 360°view of DDAD scenes. Videos show that our re-
constructed point clouds don’t have noticeable cross-view
inconsistency issues.

Qualitative comparison of depth estimation. In
Fig. 1, 5, 6, and 7, We show the qualitative comparison
of depth maps with Adabins [3], NewCRFs [27], and Om-
nidata [8]. Our results have much less artifacts.
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Figure 3 — 3D metric reconstruction of in-the-wild images. We collect several Flickr images and use our model to reconstruct the scene. The focal
length information is collected from the photo’s metadata. From the reconstructed point cloud, we can measure some structures’ sizes. We can observe
that sizes are in a reasonable range.
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Figure 4 — 3D reconstruction of 360°views. Current autonomous driving cars are equipped with several pin-hole cameras to capture 360°views.
With our model, we can reconstruct each view and smoothly fuse them together. We can see that all views can be well merged together without scale
inconsistency problems. Testing data are from NuScenes. Note that the front view camera has a different focal length from other views.
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Figure 5 — Depth estimation. The visual comparison of predicted on iBims, ETH3D, and DIODE.



RGB GT Qurs NewCRFs Adabins Omnidata

Figure 6 — Depth estimation. The visual comparison of predicted on iBims, ETH3D, and DIODE.
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Figure 7 — Depth estimation. The visual comparison of predicted on iBims, ETH3D, and DIODE.



