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We provide more implementation details for the pro-
posed primitive-aware radiance fusion method (PARF) for
indoor scene novel view synthesis and report more experi-
mental results to verify the effectiveness of PAREF, including
faster convergence, better extrapolation ability, and robust-
ness of sparsity observation.

1. Details of method
1.1. Details of representation

We give more details about the proposed primitive-aware
hybrid representation as follows. To represent the scene, we
first normalize the scene into a unit volume (with the size of
1.0%) with an expanding factor ¢ = 1.2 to moderately en-
large the volume, which acts like AABB factor defined in
InstantNGP [2]. Then the semantic volume Fg can fully
cover the scene. During the training stage, the maximum
of marching steps on each ray is 1024, and the sampling
distance between adjacent samples within D-voxels is fixed
as V3 /1024. For P-voxels, the distance is fixed as a larger
value as §, = 1.0 for all the experiments. Since a larger
d; provides a larger opacity a;; = 1 — exp(—0;9;), which
helps decrease the geometry ambiguity at regions of primi-
tives, this setting accelerates the convergence of the primi-
tive regions. Faster convergence in primitive-based regions
also means that rendering errors in non-primitive regions
account for a greater proportion of the total loss, allowing
non-primitive regions to be optimized more quickly. This
setting helps achieve rendering primitive and non-primitive
regions in a unified manner.

Additional illustration of sampling P-voxels. When ap-
plying ray marching within a P-voxel, we first sample the
ray-plane intersection point. Then the ray marches a step
with size 1 (along the plane normal) to sample the next
point. The design of ¢ prevents samples behind the plane
from jumping back to the intersection and being caught in
an endless loop. Specifically, when the current marching
point x locates in a P-voxel and x is behind the correspond-
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ing plane p, if the distance between x and the plane is larger
than v along the plane normal, we apply dense sampling (as
D-voxel) to the current P-voxel.

1.2. Details of framework

After merging the primitive detection results at frame ¢
into the global primitive list PtG_l, we check if any planes
have been removed from PtGTl. If so, all P-voxels labeled
with v; in the semantic volume V¢ will be set to D-voxels.
After that, the new semantic frame ¢ will be fused into the
semantic volume V.

When executing primitive fusion, pixels labeled as prim-
itive in I% are considered to have higher priority than
non-primitive pixels. Specifically, E-voxels assigned by
I%(u;) > 0 will be marked with a counter and cannot be
changed by pixels labeled as non-primitive (i.e., I, * (u;) =
0, ¢ >= 1) in the following frames. This helps avoid the sit-
uation that detection fails in one frame and some voxels in
front of a plane are assigned as D-voxels, which may cause
floater around the plane.

During primitive fusion, if one voxel has been assigned
as a P-voxel with more than one primitive, we take it as a
D-voxel and apply volume rendering within it since it may
be a voxel lying on the intersection of two varied primitives.

1.3. Hyper-parameters

For the positional encoder, we follow the same parame-
ter definition of multi-resolution hashing in InstantNGP [2].
There are 16 levels of hash grid with resolution varying
from 162 to 10242, The length of each feature embedding
is 2, and the hash map size of each level is 219 For the di-
rection encoder, the degree of spherical harmonics is 4. The
network consists of two MLPs: one MLP Fg, with 1 layer
of 64 neurons and another MLP Fg, with 2 layers of 64
neurons.
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where f is the output feature vector from Fg, . For Instant-
NGP and NeRF-SLAM [4], we use the same settings of po-
sition encoding, direction encoding as well as MLP except



for the extra semantic head. The size of the semantic vol-
ume Fg is 256°.

2. Additional experiments and explanation
2.1. Details of performance

Here we show the performance of PARF as well as
the comparison with the most relevant algorithm NeRF-
SLAM [4]. We state that PARF is a radiance fusion method
that can be integrated into SLAM systems for real-time
scene reconstruction. PARF consists of primitive detection,
merging, fusion, and global optimization. Primitive detec-
tion [3] and merging of each depth frame can run at 50 fps
and 30fps, respectively, at the resolution of 1200 x 680 on
CPU. Fusing the new semantic frame into the semantic vol-
ume can be run at around 30 fps.

We compare the performance of PARF and NeRF-
SLAM in Tab. 1, which is also claimed as a real-time SLAM
system. All the experiments are run on a single NVIDIA
RTX 3090 GPU. For rendering, we apply an accumulated
occupancy threshold 7" for each ray, which means the net-
work inference will stop when the accumulated occupancy
has been larger than (1 — T'). Therefore, the number of
sampled points in ray marching may differ from the number
used for volume rendering. We apply 7" = 0.0001 for train-
ing and evaluation while using 7" = 0.01 for real-time ren-
dering. We find that PARF achieves faster rendering speed
and needs less point sampling for rendering thanks to the
sparse modeling based on the proposed primitive-aware hy-
brid representation.

Index NeRF-SLAM | PARF
RM (pts/ray) 128 17.6
VR (pts/ray) 15.2 3.5

Speed 1 (iter/s) 49.5 116.1
Speed 2 (fps) 31.3 62.5

Table 1: Speed Analysis on Replica dataset. RM: aver-
age number of ray marching points on each ray, VR: aver-
age number of volume rendering points on each ray, Speed
1: average iterations per second, Speed 2: average render
speed at resolution 1200x680.

2.2. Explanation of teaser

Most SLAM systems [ 1] consist of two parts: a front-
end for tracking and a back-end for reconstruction. In
Fig. 1(a) of the manuscript, we assume that 10 new
keyframes are sent from the front-end to the back-end per
second. In other words, after each second, 10 more frames
can be used to detect primitives and optimize the global rep-
resentation. This guarantees that the frames can be used
for optimization are the same for PARF and NeRF-SLAM

at the same moment, which provides a fair comparison
between PARF and NeRF-SLAM without considering the
speed of the front-end. At each moment, all frames that
have been fed to the back-end are used to optimize the rep-
resentations of PARF and NeRF-SLAM. The incremental
reconstruction in Fig. 1(a) and the curve in Fig. 7 in the
manuscript depict that PARF achieves much faster conver-
gence for free-view synthesis and extrapolation.

NeRF-SLAM Note that the NeRF-SLAM we implement
in this work is the mapping stage of the original work [4],
which is an InstantNGP accompanied by a depth render loss
Lg=>,]ld(r)— dgt(r)||§. Besides, the depth used for su-
pervision is the ground truth depth instead of the predicted
depth from the tracking stage.

2.3. Geometry quality evaluation

With the help of primitive-level representation, PARF
enjoys much more accurate geometry reconstruction results.
We compare L1 depth render error (cm) under both inter-
polation and extrapolation views. The metrics show that
PARF consistently outperforms NeRF-SLAM, which fur-
ther proves the advantage of the hybrid representation of
PARF.

Methods Mean Interpolation Extrapolation
InstantNGP | 33.71 38.41 29.01
NeRF-SLAM | 2.430 2.387 2.473
PARF 1.401 1.554 1.249

Table 2: Geometry quality analysis. We calculate the L1
error of rendered depth maps with unit cm.

2.4. Ablation study: sparsity

Primitives provide strong prior for scene perception, en-
abling robust representation and optimization when the ob-
servation is relatively sparse. We evaluate PARF and NeRF-
SLAM with different sparsity levels of input frames on
office0 of the Replica dataset. The sparsity n of the
input frames means we take one of every n images in the
original sequence (2000 frames) as input. The full results
are shown in Tab. 3 and Fig. 1. In Fig. 1, as the degree of
sparsity increases, NeRF-SLAM shows a significant drop
in performance, while PARF is more robust to sparser in-
put, especially in the regions near the planes. From Tab. 3,
we can find that PARF performs consistently better than
NeRF-SLAM. Surprisingly, the LPIPS of PARF at sparsity
n = 140 is still better than that of NeRF-SLAM at sparsity
n = 20, which further illustrates the effectiveness of the
proposed primitive-aware fusion method for sparse-view re-
construction.
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Figure 1: Qualitative comparison of PARF and NeRF-SLAM for different sparsity settings.

. Sparsity

Methods  Evaluation \—>5——G——c— g5 100 120 140
PSNRT | 3200 3182 3127 2996 2809 2679 25.68

NeRF-SLAM  SSIM1 | 0919 0909 0908 0895 0879 0853 0.831
LPIPS | | 0274 0280 0287 0298 0316 0352 0.366

PSNR 1 | 33.18 3280 32.67 3228 3153 3124 29.76

PARF SSIM1 | 0.934 0920 0923 0916 0911 0913 0.905

LPIPS | | 0.192 0.99 0201 0201 0204 0207 0214

Table 3: Ablation study on sparsity of input frames.

2.5. Ablation study: sampling strategy

This ablation study (in Tab. 4 of the manuscript) aims
to evaluate the robustness of our primitive-guided sampling

strategy introduced in primitive-aware hybrid representa-
tion. Since depth images are available, using depth value
for sampling guidance will be more straightforward. How-



Methods Evaluation | scene0012 scene(0027 scene0457 | mean
PSNR 1 22.60 17.88 22.63 21.04
InstantNGP SSIM 1 0.645 0.684 0.726 0.685
LPIPS | 0.573 0.533 0.485 0.530
PSNR 1 25.32 20.79 23.74 23.28
NeRF-SLAM SSIM 1 0.677 0.734 0.737 0.716
LPIPS | 0.542 0.462 0.464 0.489
PSNR 1 26.03 21.54 24.22 23.93
PARF SSIM 1 0.689 0.739 0.746 0.725
LPIPS | 0.526 0.448 0.448 0.474

Table 4: Evaluation results on ScanNet dataset.
Methods Evaluation | apt0 apt2 copyroom office2 | mean
PSNR 1 2320 20.22 20.51 21.75 | 21.42
InstantNGP SSIM 1 0.733 0.648 0.797 0.717 | 0.724
LPIPS | 0.457 0.480 0.442 0.462 | 0.460
PSNR 1 2897 22.27 25.34 23.33 | 24.98
NeRF-SLAM SSIM 1 0.772 0.672 0.827 0.727 | 0.749
LPIPS | 0.368 0.439 0.344 0.424 | 0.394
PSNR 1 29.67 23.55 26.00 24.07 | 25.82
PARF SSIM 1 0.789 0.691 0.821 0.741 | 0.760
LPIPS | 0.336 0.389 0.321 0.405 | 0.363

Table 5: Evaluation results on BundleFusion dataset.

ever, depth from sensors inevitably contains noise, which
is harmful when using depth as guidance directly. In or-
der to evaluate this, we apply a simple version of depth-
guided sampling strategy to NeRF-SLAM. Specifically, if a
ray holds a valid depth value on the depth image, we only
sample the points located on and behind the depth value dur-
ing training. Besides, we maintain a simpler version of our
proposed semantic volume, which has only D-voxels and
E-voxels. In this volume, geometry fusion is implemented
by the equation V' = {v;|I5(u;) — By < D'(z;) <
I, (u;)+ By }. During test time, the sampled points will skip
E-voxels and only locates within D-voxels. Since this is a
naive way of migrating depth guidance into the volumetric
rendering optimization, the density distribution around sur-
faces will be unstable. Therefore, the sampling and recon-
struction performance will drop significantly (as depicted in
the Tab. 5 of the manuscript). On the other hand, PARF pre-
dicts primitives from sequential observations of the scene,
which helps filter noise and construct a more stable scene
representation. Note that the sigma of Gaussian noise is
100 mm, which approximates the error of depth sensors.

2.6. Ablation study: Semantic render loss

We add a semantic head and a semantic render loss L to
optimize the view-independent semantic information of the
scene. The continuous modeling of the semantic field en-

ables the representation of an unlimited number of planes,
which has the potential of replacing explicit semantic vol-
ume. Besides, since the primitive detection may be noisy
on each isolated view, the semantic field can be further ren-
dered to validate and filter noisy planes in the plane list and
improve the robustness of the primitive representation and,
therefore, improve the rendering performance. Quantita-
tive results show that before and after adding the seman-
tic head to the framework, no apparent performance drop
appears (from PSNR: 35.24, SSIM:0.944, LPIPS:0.225 to
PSNR: 35.09, SSIM: 0.943, LPIPS: 0.228). This means that
the proposed semantic field may enable further study on
geometric-level semantic guided scene reconstruction and
novel view synthesis at the cost of little burden.

2.7. Detailed quantitative results

We provide detailed quantitative results for per scene
in ScanNet (Tab. 4), BundleFusion (Tab. 5), and Replica
(Tab. 6) datasets. Note that PARF consistently outperforms
other baselines on all three datasets.

3. Limitations

Though PARF shows advantages in fast convergence,
high extrapolation quality, convenient scene edition, and
obtains SOTA performance on indoor scene reconstruction
and novel view synthesis, there are still some limitations.



Methods Evaluation | office) officel office2 office3 officed room0) rooml room2 | mean
PSNR 1 23.66 25.08 18.33 21.38 22.17 18.74 23.13 23.30 | 21.97

DVGO SSIM 1 0.802 0.802 0.783 0.818 0.850 0.632 0.781 0.779 | 0.781
LPIPS | 0.399 0.452 0.503 0.462 0474  0.594 0494 0514 | 0.487

PSNR 1 23.79 25.14 26.79 29.30 29.27 25.60  29.51 3092 | 27.54

Plenoxels SSIM 1 0.855 0.778 0.905 0.922 0.926 0.807 0.862  0.885 | 0.867
LPIPS | 0.353 0.418 0.351 0.335 0374  0.391 0.377 0.363 | 0.370

PSNR 1 29.90 36.22 28.78 28.41 33.19 27.75 31.62 31.28 | 30.89

NeRF SSIM 1 0.867 0.931 0.898 0.887 0.933 0.846  0.894 0.875 | 0.891
LPIPS | 0.364 0.353 0.389 0.396 0.369 0.341 0.325 0.379 | 0.365

PSNR 1 30.89 34.59 29.77 32.66 34.15 26.42 30.53 32.52 | 31.44

InstantNGP SSIM 1 0.917 0.890 0914 0.929 0.943 0.795 0.854  0.891 | 0.892
LPIPS | 0.285 0.383 0.356 0.313 0.327 0.412 0400 0.354 | 0.354

PSNR 1 27.20 33.21 25.92 25.22 29.68 24.46 27.11 28.35 | 27.64

TSDF-Fusion SSIM 1 0.865 0.926 0.888 0.876 0.920 0.736  0.819 0.832 | 0.858
LPIPS | 0.349 0.345 0.376 0.381 0.349 0.404 0414 0.414 | 0.379

PSNR 1 29.85 36.46 29.42 27.76 34.53 27.95 32.30 31.01 | 31.16

DS-NeRF SSIM 1 0.867 0.936 0.895 0.873 0.933 0.835 0906  0.850 | 0.887
LPIPS | 0.359 0.347 0.387 0.421 0.374 0359 0.312 0401 | 0.370

PSNR 1 31.58 37.60  33.17 28.23 36.76 20.82 3441 3478 | 33.29

Neurmips SSIM 1 0.908 0.932 0.938 0.887 0.938 0.911 0.937 0.935 | 0.923
LPIPS | 0.296 0.301 0.287 0344 0290 0.266 0.254  0.283 | 0.290

PSNR 1 32.09  40.27 33.09 34.55 37.25 30.21 33.52  35.03 | 34.50

NeRF-SLAM SSIM 1 0919  0.965 0.937 0.941 0.956 0.874  0.918 0.931 | 0.930
LPIPS | 0274 0229 029 0272 0275 0319 0.305 0.292 | 0.283

PSNR 1 33.18 39.47 34.04 34.78 37.81 31.22 3431 3592 | 35.09

PARF SSIM 1 0934 0.964 0.945 0.943 0960 0914 0940 0.948 | 0.943
LPIPS | 0.192 0.214  0.247 0.249 0.234  0.238 0.218 0.235 | 0.228

Table 6: Evaluation results on Replica dataset. We report metrics including PSNR (higher is better), SSIM (higher is better),
and LPIPS (lower is better). Note that PARF achieves the best numbers in all three metrics.

First, the performance of the proposed primitive-aware
representation may be restricted to the resolution of the se-
mantic volume. The resolution of V¢ we use now is 2563,
and the data type is 8-bit unsigned integer, which consumes
approximately 15.6Mb GPU memory. Higher resolution
will help reduce aliasing at primitive boundaries but con-
sume more memory, which is a problem of trade-off. Be-
sides, replacing the discrete 3D semantic volume with the
continuous semantic field may help alleviate this problem.

Second, though PARF can largely reduce the ambiguity
of geometry and shows a strong ability of extrapolation with
the primitive-aware representation, there may be some un-
pleasant texture artifacts in some extrapolation views due to
the incomplete scene observation. One way of solving this
problem is adding global light modeling [5], which may
help decompose diffuse color of objects and global envi-
ronment light from multi-view observation. By introducing
global light modeling, our primitive-aware representation
can further enable more realistic indoor scene roaming.
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