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Figure S-1. Examples of 4× VFI results obtained by the baseline models, AdaCoF [5], CDFI [1], and IFRNet [4], trained with and without
the proposed VOS-VFI.

A. VFI with a scale factor of 4.

The proposed VOS-VFI can be applied to any VFI
model. Consequently, arbitrary-rate VFI is feasible if VOS-
VFI is applied to VFI models supporting such a capability.
However, among the three representative baseline models
chosen in our experiments, AdaCoF [5] and CDFI [1] do not
support arbitrary-rate VFI. In addition, IFRNet [4] requires

dedicated weight parameters for multi-frame interpolation.
Therefore, to evaluate the performance of VOS-VFI on an-
other scale factor in addition to the standard scale factor 2,
we performed 2× VFI twice to have 4× VFI results, which
is a common strategy [3, 7]. Table S-1 shows the quanti-
tative performance evaluation results on the DAVIS 2016
and 2017 datasets. The results showed a similar tendency
as those obtained for the scale factor of 2. Specifically, the
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Model DAVIS 2016 DAVIS 2017

PSNR↑ †PSNR↑ J&F↑ J↑ F↑ PSNR↑ †PSNR↑ J&F↑ J↑ F↑

AdaCoF [5] 21.03 26.72 73.2 73.1 73.2 22.15 26.63 69.6 67.3 71.8
AdaCoF-VOS 20.96 26.81 77.8 77.6 78.0 22.13 26.71 73.6 71.0 76.2

CDFI [1] 21.01 26.77 78.6 77.8 79.4 21.98 26.69 75.2 72.1 78.4
CDFI-VOS 21.05 26.88 80.0 79.2 80.8 22.03 26.80 76.1 72.9 79.3

IFRNet [4] 21.32 26.83 78.7 78.6 78.7 22.33 26.76 75.2 72.5 78.0
IFRNet-VOS 21.36 26.94 79.3 79.1 79.5 22.37 26.82 76.0 73.1 78.9

Table S-1. Quantitative results of the three baseline models trained with and without VOS-VFI for 4× interpolation. The performance
is evaluated in terms of the image quality PSNR and segmentation accuracy (J&F , J , and F ) on the DAVIS 2016 and 2017 datasets. †
represents PSNR scores on the foreground objects obtained by masking out the background using the ground-truth segmentation maps.

proposed VOS-VFI improved the segmentation accuracy of
the baseline models by 4.6%, 1.4%, and 0.6% for AdaCoF,
CDFI, and IFRNet for DAVIS 2016, respectively, and 4.0%,
0.9%, and 0.8% for AdaCoF, CDFI, and IFRNet for DAVIS
2017, respectively, in terms of J&F .

Fig. S-1 shows several results obtained for 4× VFI on
the HD dataset. As can be seen, the proposed VOS-VFI
contributed to the baseline models by improving the image
quality of interpolated frames.

B. More results
First, we experimented the method that uses the

correspondence-wise loss (CoRR) [2] for achieving better
visual quality, which can be adopted to any other VFI mod-
els as our approach. However, as shown in Table S-2, we
could not obtain performance improvements using CoRR.

Next, we applied VOS-VFI to a more recent transformer-
based VFI baseline [8]. VOS-VFI also introduced non-
marginal improvements, especially for VOS metrics, on
this latest baseline. Our source code can be found in our
project page1. We expect that the proposed VOS-VFI train-
ing framework can be applied to upcoming VFI models to
boost performance without increasing their number of pa-
rameters and inference time.

Lastly, Table S-3 provides the NIQE/PI/NIMA scores
obtained from four datasets for clear performance com-
parisons. As can be seen, the proposed method improved
these perceptual metrics on all datasets. Table S-4 pro-
vides the PSNR scores on the four datasets, where the fore-
ground PSNRs were only measured for the DAVIS datasets
using the ground-truth segmentation maps. Although the
proposed VOS-VFI showed some improvements in fore-
ground object synthesis, we could not obtain consistent per-
formance improvements in terms of the PSNR. Note that the
PSNR is not correlated with the human perceptual quality of
interpolated frames [6], and VOS-VFI showed effectiveness

1https://github.com/junsang7777/VOS-VFI

Model DAVIS 2016

PSNR †PSNR J&F↑ J↑ F↑

AdaCoF 25.11 25.62 85.9 84.9 86.8
AdaCoF-VOS 25.03 25.72 87.0 85.9 88.2
AdaCoF-CoRR[2] 24.87 25.66 85.1 84.2 86.0

EMA [8] 27.24 26.03 88.0 86.7 89.3
EMA-VOS 27.19 26.06 88.8 87.6 90.1
EMA [8]-CoRR[2] 27.10 25.80 86.9 85.9 88.0

Table S-2. Evaluation using the additional methods [2,8]. † repre-
sents a foreground PSNR.

in the perceptual quality metrics, VOS performance (Table
1), video tracking performance (Table 3), object pose es-
timation performance (Table 5), and user studies (Section
4.2.1). Check our project page for more results.



Model DAVIS 2016 DAVIS 2017 Vimeo90K (val) UCF101 (val)

NIQE↓ PI↓ NIMA↑ NIQE↓ PI↓ NIMA↑ NIQE↓ PI↓ NIMA↑ NIQE↓ PI↓ NIMA↑

AdaCoF [5] 3.443 3.338 4.565 3.545 3.402 4.502 5.180 4.104 4.765 7.272 5.695 4.018
AdaCoF-VOS 3.431 3.329 4.586 3.534 3.400 4.505 5.153 4.094 4.771 7.237 5.678 4.026

CDFI [1] 3.081 2.845 4.568 3.267 3.015 4.485 4.933 3.832 4.873 6.878 5.421 3.987
CDFI-VOS 3.067 2.658 4.671 3.254 3.002 4.492 4.910 3.822 4.879 6.875 5.408 3.991

IFRNet [4] 3.534 3.304 4.407 3.668 3.494 4.351 5.062 3.969 4.820 7.191 5.665 4.023
IFRNet-VOS 3.519 3.294 4.416 3.651 3.483 4.361 5.021 3.935 4.824 7.115 5.617 4.020

Table S-3. Evaluation in terms of the three representative perceptual quality metrics.

Model DAVIS 2016 DAVIS 2017 Vimeo90K (val) UCF101 (val)

PSNR↑ †PSNR↑ PSNR↑ †PSNR↑ PSNR↑ PSNR↑

AdaCoF [5] 25.11 25.62 26.23 26.13 34.34 35.16
AdaCoF-VOS 25.03 25.72 26.21 26.22 34.26 35.16

CDFI [1] 25.68 25.74 26.71 26.24 35.17 35.21
CDFI-VOS 25.75 25.80 26.79 26.30 35.28 35.25

IFRNet [4] 26.70 25.91 27.57 26.44 35.73 35.26
IFRNet-VOS 26.74 25.98 27.60 26.50 35.80 35.28

Table S-4. Evaluation in terms of the PSNR. † represents a foreground PSNR.
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