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1. Details of the Implemented ISP

We implement the following ISP functions in a differen-
tiable manner.

Auto Gain (AG)

Usual auto gains simply multiply some value, but we for-
mulate as,
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where p,,, pp, and p,, are parameters to be controlled, and z
is the each pixel in the input image X. It intends to control
how much and what range of domain should be emphasized
with the third equation. The first and the second avoid over-
flow from [0, 1] without clipping as shown in Fig. 1.

Denoiser (DN)
We utilize a simple Bilateral filter (BF) [13] as,

Ipn (X) = (1 =pa) X +pa BF (pos, Poi; X) . (2)
where p,s and p,; are the parameters for the spatial and
intensity variance and p, is another parameter. We set the
kernel size as five.

Sharpener (SN)
Simple Gaussian filter (GF) is used as,
Isn (X) = (1=pa) - X +pa- (X —GF(ps;X)). 3)

The second term is the difference-of-Gaussians [10] whose
kernel sizes are one and five;

Figure 1. Auto gain function without clipping.

DoG(X) = GF(pg1,k1; X) — GF (po, k2 X)
=X - GF(ps,5 X). 4

Gamma (GM)
We follow the parameterization of gamma tone mapping in
[11, 15] and implement it as differentiable;
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Contrast Stretcher (CS)

We implement CS as a simple linear function of Iog (X) =
@ X + q.. Because DNN can process any range of value,
we do not restrict the range.

Table 1. Control of Multi-layer ISPs on the human detection
dataset. We add ISP layers in order of effect.

ISP components \ w/oLU w/LU

GM 48.9 -
GM+CS 49.4 494
DN+GM+CS 49.2 494
DN+SN+GM+CS 48.0 49.5
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(a) Feedforward control from a single-feature.
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(c) Feedforward control by exemplifications

when using several ISP parameter sets [4].
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(b) Feedforward control from multi-features.
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(d) Feedback control from a single-feature (ours).

Figure 2. Comparison with other possible controllers. The (a) is the most lightweight possible controller among feedforward control. The
(b) is based on typical dynamic neural network architectures [14, 2, 3]. The (c) is a more advanced method of the (b) proposed for RAW
image reconstruction [4]. The (d) is the proposed efficient feedback control.

Table 2. Comparison with other possible controllers on the human detection dataset. C' is the computational cost of the ISP. ResNet18 or

4-layer CNN is used as the encoder for feedforward controls.

ISP GFLOPS  #params [M] latency [ms] controller [ms] AP [%]
(a) (encoder = 4-layer CNN) | 14.03+C 14.33 11.2 3.3 47.5
+ our “RO+” 14.03+C 14.33 11.5 3.6 48.8
GM (a) (encoder = ResNet18) 20.99+C 25.77 13.2 53 46.1
+ our “RO+” 20.99+C 25.77 13.6 5.7 49.4
(d) ours 13.65+C 15.66 8.3 0.4 49.1
(a) (encoder = ResNet18) 20.99+C 25.77 31.14 5.3 48.3
+ our “RO+” and “LU” 20.99+C 25.87 31.64 5.8 48.5
(b) (encoder = 4-layer CNN) | 15.23+C 14.72 20.14 3.3 47.7
DN+SN+GM+CS + our “RO+” 15.23+C 14.72 29.54 3.7 49.0
(c) (encoder = 4-layer CNN) | 15.93+6C 14.73 101.18 92 & 49.4
(d) ours 13.65+C 15.76 2776 1.9 49.6

#: Our implementations of DN and SN have a lot of duplicate calculations and are not optimized.

&: Because of the above, the controller’s latency is measured in case all four layers are GM to make a fair comparison.

2. Additional Evaluations
2.1. Evaluation on Human Detection

Multi-Layer Control

A more detailed ablation study is performed for multi-layer
control. Here, we add ISP layers in order of effect one by

one. As the Table | shows, the proposed method without
LU struggles to control multi-layer ISPs. The proposed LU
successfully disentangles the difficulty of multi-layer con-
trol and boosts the accuracy from the setting of only con-
taining GM tone mapping.



Table 3. Detailed evaluation on LODDataset [7] trained with simulated RAW-like data converted from COCO Dataset [9].

mAP@0(.5:0.95 per exposure ratio to default
1/10 1/20 1/30 1740 1/50 1/100 \ Ave.
as is 233 1677 144 1141 134 3.6 14.3
SID [1] 25.8 200 164 151 132 6.7 16.2
Zero DCE [5] 325 253 234 215 178 89 | 21.6
REDI [&] 33.6 302 261 246 234 141 | 254
H. Yang et. al. [7] 385 317 293 278 27.1 18.1 | 28.8
diff. tuning (GM) [15] 428 349 395 389 294 126 | 33.0
NeuralAE (GM)[12] 423 353 385 406 299 156 | 337
NeuralAE (GM+CS)[12] | 37.0 31.5 334 351 285 183 | 30.6
ours (GM) 452 411 51.1 491 414 339 | 436
ours (AG+GM+CS) 458 41.1 521 48.6 412 349 | 44.0

Comparison with Other Possible Controllers

In this section, the proposed controller is compared with
other possible controllers, especially feedforward con-
trollers because most of the dynamic neural networks meth-
ods [14, 2, 3] have successfully controlled DNN parameters
based on feedforward controls. Fig. 2(a) controls all func-
tions based on a single-feature. It is different from the typ-
ical controllers for dynamic neural networks [14, 2, 3] but
the most lightweight possible feedforward controller. Fig.
2(b) is based on typical dynamic neural network architec-
tures that control each layer with an output of the previous
layer. The problem in applying it to the ISP control is that
the output of the previous layer is just an image, so it is
necessary to create features from scratch using an encoder.
Fig. 2(c) is a more advanced method of Fig. 2(b) proposed
for RAW image reconstruction [4]. Several processed im-
ages with different parameter sets are input to the encoder
as exemplifications, and the output parameters from the en-
coder are determined as the weighted average of the param-
eter sets. Note that the inverse pipeline is not implemented
because it is trained only with detection loss in our prob-
lem setup. The number of exemplifications is set as five.
We use two types of networks with different computational
costs as encoders in Fig. 2(a), (b), and (c): ResNet18 [0] or
4-layer light-weight CNNs with ReLU activations, whose
kernel sizes, strides, and output channel sizes are (3, 3, 3,
3), (2, 2,2,2), and (16, 32, 64, 128). Fig. 2(d) is the pro-
posed feedback control from a feature.

The results are shown in Table 2. In the case of the
single-layer ISP setting, the feedforward control exceeds
the accuracy of the proposed method by using a large en-
coder (ResNetl18). However, in the experimental setting
with the 4-layer CNN, where the computational cost is still
higher than the proposed method, the accuracy is inferior.
This result indicates that the feedback control is more effi-
cient. By adding more convolutions to the “Semantic Fea-
ture Branch” (SFB), the proposed feedback control might
improve the accuracy. In our setting, SFB contains only

one convolution layer.

In addition, the proposed RO+ for

controlling a difficult function is found to be effective even
for the feedforward controls.

In the case of the multi-layer ISP setting, the proposed
method outperforms feedforward controls with lower com-
putational cost. Although the (c¢) architecture is accurate,
it takes a high computational cost because it needs multi-
ple computations of ISPs and encoders. Limitted to feed-
forward controls, a comparison of (a) and (b) shows that it
is more efficient to encode the previous layer’s image with
multiple small encoders than with one large encoder. On
the other hand, our feedback control achieves higher accu-
racy despite the fact that the control is based on a single
shallow layer of feature (the output of the first stage of the
detector’s ResNet18 backbone). This should be because the
following two factors outweigh the difficulty of controlling
from a single encoder. One factor should be the advantage
that the controller is able to extract what is captured by the
detector directly. The other factor should be the effective-
ness of the proposed training method for feedback control
(PI).

Lastly, the proposed method is lightweight because it
does not require image encoders and performs almost only
1D tensor operations.

2.2. Evaluation on Low-Light Recognition

Training with Simulated RAW Images

A more detailed comparison than Table 7 of the main paper
is shown in Table 3. It is broken down by the level of under-
exposure. Our method obtains the highest accuracy among
all levels of under-exposure. The dynamic ISP control is
able to convert a broad luminance distribution environment
to a preferable distribution for the detector. The visualized
comparison is in Fig. 3 and Fig. 4.



Table 4. Evaluation on LODDataset [7] trained with real dark
RAW data in LODDataset.

ISP \ mAP@0.5:0.95
H. Yang et. al. [7] - 447
NeuralAE [12] GM 45.0
Neural AE [12] GM+CS 45.5
ours GM 454
ours AG+GM+CS 46.2

Training with Real Dark RAW Images

We also evaluate the case of real RAW images used for
training. The real RAW images are randomly split into
training data of 1830 images and test data of 400, the same
with [7]. The result is shown in Table 4. Our method is
confirmed effective for small amounts of real RAW training
data.



SID [1] Zero DCE [5] REDI [8] H. Yang et. al. [7]
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Figure 3. The visualization result on LODDataset [7] trained with simulated RAW-like data converted from COCO Dataset [9]. The results
of SID, Zero DCE, REDI, and H. Yang et. al. are from the [7]’s paper.
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Figure 4. The visualization result on LODDataset [7] trained with simulated RAW-like data converted from COCO Dataset [9]. More
challenging images than images in Fig. 3 are collected.
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