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This supplemental material contains the following parts:
(A) The architecture of 3D pose estimation stream.
(B) Additional quantitative results.
(C) Additional ablation study.
(D) Details about loss functions.
(E) Additional visualization results.

A. Architecture of 3D Pose Estimation Stream
Figure A shows the detailed architecture of the 3D pose

estimation stream. Firstly, the normalized 2D pose se-
quence is projected to high-dimensional joint features by
a linear embedding layer. Secondly, we project and ex-
pand the static image features, which are added to their
corresponding joint features in the same frame. Then we
add the spatial and temporal embeddings to joint features
and feed joint features to the spatial-temporal Transformer,
which consists of cascaded spatial and temporal parts. In
the spatial part, the spatial MSA calculates the similarities
between joint tokens in the same frame. In the temporal
part, the joint features are reshaped from (T × J × C1) to
(J ×T ×C1), and thus the temporal MSA can calculate the
similarities between frame tokens of the same joint. Finally,
the joint features are regressed from C1 to 3 and fused from
T frames to one frame to get the mid-frame 3D pose.

B. Additional Quantitative Results
Comparison with Single RGB-Based Methods. Table A
compares our PMCE with single RGB-based methods on
the 3DPW dataset. All methods use ResNet as the back-
bone. We evaluate the models trained with and without
3DPW training set for fair comparisons. Single RGB-based
methods focus on per-frame accuracy and propose advanced
networks to extract image features [1, 5, 10, 13] and gen-
erate human mesh, which shows high performance. In
contrast, our PMCE takes pre-trained backbone [6] to ex-
tract feature vectors following previous video-based meth-
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Table A: Comparison with single RGB-based methods. All
methods use ResNet as the backbone. ‘†’ represents train-
ing w/o 3DPW training dataset. ‘∗’ represents training with
3DPW training set. The top two best results are highlighted
in bold and underlined, respectively.

Method 3DPW
MPJPE ↓ PA-MPJPE ↓ PVE ↓ ACCEL ↓
R

G
B

-b
as

ed

HMR† [3] 130 76.7 - 37.4
GraphCMR† [7] - 70.2 - -
SPIN† [6] 96.9 59.2 116.4 29.8
I2L-MeshNet† [10] 93.2 57.7 110.1 30.9
PyMAF† [13] 92.8 58.9 110.1 -
PARE† [5] 82.9 52.3 99.7 -
ROMP∗ [11] 79.7 49.7 94.7 -
METRO∗ [1] 77.1 47.9 88.2 -
CLIFF∗ [8] 72.0 45.7 85.3 24.7

PMCE (Ours)† 81.6 52.3 99.5 6.8
PMCE (Ours)∗ 69.5 46.7 84.8 6.5

Table B: Generalization evaluation in unseen views on Hu-
man3.6M. The test view is View 4.

Training views Only-pose model PMCE Improvements
MPJPE ↓ PVE ↓ MPJPE ↓ PVE ↓ MPJPE PVE

1 161.7 165.3 82.9 89.4 78.8 75.9
1, 2 100.2 112.7 59.2 69.9 40.9 42.8
1, 2, 3 85.8 96.0 58.4 67.1 27.4 28.9

ods [2, 4, 12]. Compared to the single RGB-based meth-
ods, our PMCE achieves competitive performance in PA-
MPJPE and outperforms the state-of-the-art method in the
metrics of MPJPE, PVE, and ACCEL. The results demon-
strate the superiority and effectiveness of our pose and mesh
co-evolution design in terms of both per-frame accuracy and
temporal consistency for 3D human motion estimation.
Generalization in Unseen Views. Our method decouples
2D poses and image features from image sequences, which
can not only provide complementary pose and shape infor-
mation for better mesh estimation but also improve the gen-
eralization. To verify the latter, we compare our PMCE with
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Figure A: Architecture of 3D Pose Estimation Stream.

Table C: Performance comparison between different initial-
izations of mesh vertices on 3DPW.

Mesh initialization MPJPE ↓ PA-MPJPE ↓ PVE ↓

Zeros 72.3 48.5 88.5
Template 71.4 47.6 86.2
Nearest joints (Ours) 69.5 46.7 84.8

the only-pose model (PMCE without using the image fea-
tures) on the Human3.6M dataset. Specifically, based on
the four camera views of Human3.6M, we train the net-
works on View 1, View 2, and View 3, then test them on
the unseen View 4 to evaluate their generalization in unseen
views. As shown in Table B, the only-pose model suffers
from the domain gap between training and testing views,
especially when training with few view data (top line). In
contrast, our PMCE has better generalization ability and im-
proves performance by a large margin. The results indicate
that our method, complementing the pose information and
image features, is effective for a robust mesh estimation in
unseen views.

C. Additional Ablation Study

Impact of Mesh Initializations. Mesh initialization serves
as a human body prior in our method. Table C examines
the impact of different mesh initializations, including set-
ting mesh vertices to zeros, using T-shape template mesh
from SMPL [9] or setting the position of per mesh vertex
as that of its nearest joint in estimated 3D pose P0 (the dis-
tances between vertices and joints are pre-calculated from
the template mesh and pose provided by SMPL). Compared
with template mesh, setting vertices to their nearest joints
makes the initialized mesh closer to the final mesh, which
can provide a more precise human body prior and contribute
to the final mesh performance.

D. Loss Functions

For the 3D pose estimation stream, we use the L1 joint
loss to supervise the intermediate 3D pose P0, which is de-

fined as follows:

Lint
joint =

1

J

J∑
i=1

∥Pgt − P0∥1 . (A)

After training the 3D pose estimation stream, we train
the whole network using the following four loss functions.
Mesh Loss. We use the L1 loss between the ground truth
3D mesh vertices Mgt∈RV×3 and the predicted 3D mesh
vertices M∈RV×3. The mesh vertex loss is calculated as:

Lmesh =
1

V

V∑
i=1

∥Mgt −M∥1 . (B)

Joint Loss. We multiply the predicted 3D mesh M by a pre-
defined matrix J∈RJ×V to obtain the regressed 3D joints
and calculate the joint loss with ground truth 3D joints Pgt:

Ljoint =
1

J

J∑
i=1

∥Pgt − JM∥1 . (C)

Surface Normal Loss. This loss is used to improve surface
smoothness and local details. It is calculated by the normal
vectors of the ground truth mesh and the predicted mesh:

Lnormal =
∑
f

∑
{i,j}⊂f

∣∣∣∣〈 mi −mj

∥mi −mj∥2
, ngt

〉∣∣∣∣ , (D)

where f denotes a triangle face in the mesh, mi and mj

denote the ith and jth mesh vertices of the triangle face re-
spectively. And ngt is the unit normal vector of the triangle
face f in the ground truth mesh.
Surface Edge Loss. This loss is used to improve the
smoothness of the areas with dense vertices, e.g., hands and
feet. The edge length consistency loss is calculated by the
ground truth edges and the predicted edges as:

Ledge =
∑
f

∑
{i,j}⊂f

∣∣∥∥mgti −mgtj

∥∥
2
− ∥mi −mj∥2

∣∣ .
(E)

Given the four loss functions, the final loss is calculated
as the weighted sum:

L = λmLmesh + λjLjoint + λnLnormal + λeLedge, (F)

where λm=1, λj=1, λn=0.1, λe=20 in the experiments.



Figure B: Qualitative comparison between MPS-Net [12] and our PMCE. For each video sequence, the top rows show the
video frames, the middle rows show the predicted mesh results from our PMCE (blue), and the bottom rows show the mesh
results from MPS-Net (pink). Our method can produce more accurate and smooth 3D human motion in fast motions (first
sequence), occlusions (second sequence), and slight pose changes (last sequence).
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Figure C: Visualization of attention maps. From left to right: input image, the generated 3D pose and coarse mesh, four
kinds of interactions, and the output mesh. ‘→’ denotes the direction of information flow. The brighter color indicates higher
attention. And the color of lines in each attention map is normalized with the corresponding maximum. In Col. 3 ‘Mesh →
Pose’ interaction, the joint learns human body shape information from vertices. In Col. 4 ‘Pose → Mesh’ interaction, the
vertex can be guided by joints to perform mesh deformation.

E. Additional Visualization Results

Qualitative Comparison. Figure B shows the qualitative
comparison between the previous state-of-the-art video-
based method MPS-Net [12] and our PMCE on the chal-
lenging video sequences. It shows that our method can pro-
duce more accurate and temporally consistent mesh results,
especially in fast motions, occlusions, and delicate body de-
formations.

Visualization of Attention Maps. We further study the in-
teractions of pose and mesh in the proposed co-evolution
decoder, including Mesh → Pose, Pose → Mesh, Mesh
→ Mesh, and Pose → Pose interactions. We obtain the
above four kinds of attention maps from the last layer of
the co-evolution decoder by averaging the attention val-
ues of all attention heads in their corresponding atten-
tion blocks. Figure C shows the visualization of atten-
tion maps taking different reference nodes. In ‘Mesh →



Pose’ interaction (Col. 3), each joint can obtain the global
shape information from vertices which is not available in
its original pose representations. In ‘Pose → Mesh’ inter-
action (Col. 4), each mesh vertex aggregates pose informa-
tion that can guide the mesh deformation. And in ‘Mesh →
Mesh’ (Col. 5) and ‘Pose → Pose’ (Col. 6) interactions, ver-
tices and joints perform internal adjustments, respectively.
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