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In the Supplementary material, we include an Appendix
with results for mAP metric, an ablation on architecture
size, results for a setting where evaluation is performed per
domain separately, results for specialists when used as uni-
versal embeddings and a comparison of PCA-Whitening
(PCAw) with random linear projection. All experiments in
the supplementary material are reported for 1 seed (except
stated otherwise). Additionally, we provide a collage of im-
age samples coming from the domains the proposed UnED
dataset covers.

A. Appendix
A.1. mAP results

As discussed in Section 3.2, we additionally present re-
sults using the mean Average Precision (mAP) metric. In
particular, we compute mAP@100, where only the top 100
retrieved images contribute to the score. As in [1], this metric
is defined as:

mAP@100 =
1

Q

Q∑
q=1

AP@100(q), (1)

where

AP@100(q) =
1

min(mq, 100)

min(nq,100)∑
k=1

Pq(k)relq(k)

(2)
Here, Q is the total number of query images, mq is the
number of index images containing an object in common
with the query image q (images from the same class in the
index), nq is the number of predictions made by the system
for query q (for our case it is always 100 as we always
retrieve 100 images for this metric), Pq(k) is the precision
at rank k for the q-th query; and relq(k) is a binary indicator
function denoting the relevance of prediction k for the q-th
query.

Results are presented in Table S1. It can be observed
that there is high correlation between the mAP and the met-
rics reported in the main paper. For example, the highest
performing method in all cases is obtained with CLIP pre-
training and the oracle specialist. The three universal models
based on CLIP pre-training perform very similarly: their
relative ranking remains the same as the one of the mMP@5
metric. The same holds for the relative ranking of the uni-
versal models with IN pretraining. Additionally, for most
domains, mMP@5 and mAP agree on the best model. We
conclude that all metrics capture similar trends, while specif-
ically mMP@5 and mAP are very correlated. To improve
metric interpretability and simplicity, as discussed in Section
3.2, we thus decide to establish the two main metrics in our
benchmark as mMP@5 and R@1.

A.2. Architecture ablation

We study the effect of the ViT architecture size, by com-
paring the performance of ViT-Small, ViT-Base (used in the
main paper) and ViT-Large on our evaluation benchmark.
Each of them has larger number of parameters than the previ-
ous one, being more memory and computationally expensive.
We compare them by training with the UJCRR method (ex-
plained in the main paper), starting from IN pretraining.

Results shown in Table S2 justify our choice of ViT-Base
as our main backbone; it is a good tradeoff for size and
performance, performing as well as the larger ViT-Large, but
a lot better than the smaller ViT-Small.

A.3. Separate index evaluation

We include results for an evaluation where each domain’s
queries are tested against the index of the same domain,
instead of the merged index set, which is the main evaluation
of our proposed benchmark. It corresponds to the setting
where an Oracle is available, that restricts the index to images
from the same domain as the one of the query image. For



this evaluation, only the CLIP pretraining is used.
Results are shown in Table S3, and each entry in the table

can only be equal or greater than the corresponding one in
the main paper. This is because all cross-domain mistakes
are avoided in the current setting. We observe that the univer-
sal models and the oracle specialist performs slightly better
on average in this setting, with the highest increase being
in the Met domain. This could be caused by the fact that
the Met domain contains artworks that can also be consid-
ered roughly parts of the other domains as well, e.g. cloth-
ing pieces, depictions of animals or landmarks in paintings,
therefore making it easier to have cross-domain mistakes for
Met queries. Additionally, CLIP+PCAw performance is also
a lot higher, showing that naive unsupervised projection with
PCA-Whitening produces a lot of cross-domain mistakes.

A.4. Specialists as universal embedding models

We present evaluation results for specialist models used as
universal embedding models in Table S4, the highest values
for each column are highlighted in bold, and the lowest in
red. For this evaluation, only the CLIP pretraining is used.

As expected, for each domain, the best performing spe-
cialist model is the one trained on the corresponding training
set, and the best pretraining for that domain corresponds to
the one reported in Table 4 of the main paper. We also note
that the best performing models are the specialist models fine-
tuned on Met and Rp2k domains, though the performance
of these models is still a lot worse than the best universal
model reported in the main paper. Interestingly, finetuning
on the GLDv2 domain performs the worse on average, for
both types of pretraining.

A.5. PCA-Whitening vs Random Projection

We present a comparison of PCA-whitening as a means
to reduce the dimensionality of the off-the-shelf embeddings
shown in the Table 4 of the main paper versus Random Lin-
ear projection to 64-D, in Table S5. Results on the original
dimensionality results are also shown for reference. The
random linear projection results are averaged over 3 seeds.
PCA-Whitening has been trained on the union of subsets
of ∼9k images of each domain. We observe that for Ima-
geNet pretraining, the random projection performs better on
average than PCA-Whitening, while for CLIP pretraining it
underperforms the former.

A.6. Visual presentation of all domains

In Figure S1 we show a collective presentation of example
images from the different domains the UnED dataset covers.
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Figure S1: Example images from the different domains that the proposed UnED dataset covers.

Food2k CARS196 SOP InShop iNat Met GLDv2 Rp2k Mean
Model mAP@100

Off-the-shelf
IN (768-D) 23.6 9.6 38.5 34.5 43.1 22.6 7.8 41.9 27.7

CLIP (768-D) 21.4 29.0 39.3 36.0 24.3 23.7 11.6 28.6 26.7
IN + PCAw 13.6 5.9 26.3 18.2 27.7 9.0 3.6 28.4 16.6

CLIP + PCAw 17.1 20.0 32.2 25.9 17.9 14.0 6.4 23.4 19.6
Specialists

IN+Oracle 42.7 19.9 56.6 64.8 49.4 24.1 19.4 64.8 42.7
CLIP+Oracle 43.7 40.5 62.6 66.2 43.9 27.4 23.1 59.5 45.9

Universal models
IN+UJCDS 44.3 15.4 51.7 58.8 48.0 4.7 17.2 65.7 38.2

CLIP+UJCDS 45.2 33.4 55.6 63.1 41.3 2.6 21.2 62.2 40.6
IN+UJCRR 42.7 23.2 61.5 73.6 48.1 5.9 12.0 66.1 41.6

CLIP+UJCRR 43.9 39.5 65.8 76.7 40.4 5.9 15.2 61.5 43.6
IN+USCRR 42.2 16.7 58.2 69.5 48.6 8.0 13.2 65.0 40.2

CLIP+USCRR 41.7 36.2 61.6 71.7 40.5 9.7 15.4 62.8 42.4
IN+USCSS 40.8 13.3 57.2 65.6 47.0 11.5 16.6 64.2 39.5

CLIP+USCSS 42.1 33.5 62.9 70.2 42.5 8.5 20.3 61.9 42.7

Table S1: Corresponding mAP@100 for baselines presented in Table 4 on the main paper. Color coding follows Table 4.

Mean
Model mMP@5 R@1

ViT-S (IN) 48.3 58.9
ViT-B (IN) 52.4 62.6
ViT-L (IN) 52.4 62.6

Table S2: Ablation for the model architecture. All models are finetuned with the UJCRR method described in the main paper.



Food2k CARS196 SOP InShop iNat Met GLDv2 Rp2k Mean
Model mMP@5 R@1 mMP@5 R@1 mMP@5 R@1 mMP@5 R@1 mMP@5 R@1 mMP@5 R@1 mMP@5 R@1 mMP@5 R@1 mMP@5 R@1

Off-the-shelf
CLIP (768-D) 29.4 42.9 74.8 82.2 44.4 65.5 37.2 56.0 53.4 62.8 27.7 37.5 20.4 31.0 38.6 59.9 40.7 54.7
CLIP + PCAw 29.9 41.5 67.9 76.3 40.7 61.3 39.8 57.8 52.0 60.3 19.5 25.7 16.5 23.2 40.5 59.6 38.4 50.7

Specialists
CLIP+Oracle 52.9 64.4 83.3 88.6 67.5 82.1 69.2 86.9 69.3 74.7 33.1 39.8 36.0 47.7 71.1 85.1 60.3 71.2

Universal models
CLIP+UJCDS 51.3 62.9 76.1 82.4 58.9 75.7 62.7 80.3 65.0 70.7 5.7 7.0 33.3 45.6 70.2 84.2 52.9 63.6
CLIP+UJCRR 50.0 62.0 80.3 86.0 68.6 82.7 77.2 90.9 64.6 70.3 9.8 12.3 25.5 36.0 69.8 83.9 55.7 65.5
CLIP+USCRR 50.0 61.8 80.4 85.8 66.7 81.7 73.6 89.7 65.7 71.6 12.3 15.9 25.6 36.3 71.9 85.5 55.8 66.0
CLIP+USCSS 50.1 61.9 78.6 85.0 68.1 82.5 72.5 89.3 67.3 73.2 10.6 14.2 32.6 43.9 71.3 85.1 56.4 66.9

Table S3: Corresponding separate index evaluation for baselines presented in Table 4 on the main paper.

Food2k CARS196 SOP InShop iNat Met GLDv2 Rp2k Mean
Model mMP@5 R@1 mMP@5 R@1 mMP@5 R@1 mMP@5 R@1 mMP@5 R@1 mMP@5 R@1 mMP@5 R@1 mMP@5 R@1 mMP@5 R@1

Specialists
IN+Food2k 50.3 63.0 30.9 40.5 29.4 49.1 21.8 34.7 53.5 60.2 7.8 7.0 8.8 13.6 40.5 61.9 30.1 41.2

CLIP+Food2k 51.3 63.5 70.1 78.8 29.6 49.0 25.5 40.9 42.9 50.3 4.6 6.0 16.7 24.4 34.9 56.0 34.4 46.1
IN+CARS196 19.6 29.4 62.4 72.0 26.1 45.1 20.3 33.1 54.8 61.3 11.6 16.6 8.1 12.7 38.6 60.1 30.2 41.3

CLIP+CARS196 19.0 28.7 82.6 88.4 29.1 48.4 24.5 39.9 42.5 50.1 10.0 13.8 14.7 22.2 27.6 46.5 31.2 42.2
IN+SOP 13.1 20.9 22.2 32.0 61.2 78.3 29.3 45.9 44.9 52.6 2.5 3.1 5.6 9.1 44.0 66.1 27.8 38.5

CLIP+SOP 10.7 17.9 44.3 56.5 66.2 81.4 32.1 50.0 30.2 38.3 3.0 4.3 8.6 13.5 37.0 59.2 29.0 40.1
IN+InShop 13.4 21.6 23.6 32.8 33.5 54.7 66.6 86.1 45.8 53.2 5.5 7.2 6.8 11.8 40.0 62.2 29.4 41.2

CLIP+InShop 13.1 21.0 61.0 70.6 31.7 51.8 67.8 86.2 35.0 42.5 6.3 8.3 12.1 19.8 31.0 52.1 32.2 44.0
IN+iNat 24.1 34.8 34.4 44.0 29.6 49.3 24.6 39.0 70.0 75.1 13.8 20.7 10.2 16.2 41.8 62.6 31.1 42.7

CLIP+iNat 17.6 27.5 61.4 71.0 30.6 50.1 27.4 43.4 67.1 72.7 10.1 13.6 11.3 16.9 34.0 54.7 32.4 43.7
IN+Met 14.7 23.7 28.5 39.4 38.0 59.5 33.8 52.8 43.2 51.0 21.7 25.9 9.6 16.1 48.6 70.3 29.8 42.3

CLIP+Met 16.1 25.4 59.6 70.2 43.8 64.5 40.5 61.5 36.9 45.1 25.7 30.8 16.1 24.6 44.6 66.9 35.4 48.6
IN+GLDv2 12.7 19.9 13.7 22.6 36.6 57.8 25.7 40.1 43.5 50.9 3.2 4.3 31.6 43.8 41.2 63.3 26.0 37.8

CLIP+GLDv2 9.7 16.4 23.4 33.3 33.3 53.6 22.3 36.5 26.1 33.7 3.3 4.4 35.6 46.7 26.8 46.3 22.6 33.9
IN+Rp2k 21.4 31.8 34.8 45.7 34.7 56.3 27.1 42.8 54.4 61.6 14.3 19.8 10.4 17.4 73.6 87.2 33.8 45.3

CLIP+Rp2k 19.0 29.1 62.8 71.6 34.6 55.6 29.3 46.0 38.9 47.1 15.5 20.5 15.4 25.2 69.6 84.6 35.6 47.5

Table S4: Results for specialist models when used as universal embeddings on our benchmark. Model column has the format :
{Pretraining}+{Finetuning dataset}.

Food2k CARS196 SOP InShop iNat Met GLDv2 Rp2k Mean
Model mMP@5 R@1 mMP@5 R@1 mMP@5 R@1 mMP@5 R@1 mMP@5 R@1 mMP@5 R@1 mMP@5 R@1 mMP@5 R@1 mMP@5 R@1

Off-the-shelf
IN (768-D) 31.1 44.1 41.4 54.1 43.7 65.6 35.5 53.9 67.1 74.2 21.1 30.8 14.8 25.2 52.9 74.3 38.4 52.8

CLIP (768-D) 29.4 42.9 74.7 82.2 44.2 65.4 37.2 56.0 52.4 61.9 21.4 28.5 20.4 31.0 38.6 59.9 39.8 53.5
IN+PCAw 19.1 29.1 29.0 37.8 30.5 51.2 19.6 31.6 50.9 57.9 8.0 11.0 8.3 13.2 37.6 57.8 25.4 36.2

CLIP+PCAw 23.4 34.6 62.8 72.7 36.5 57.0 27.0 41.8 42.7 51.1 12.1 15.8 11.9 17.6 32.0 51.8 31.0 42.8
IN+Rand.Proj. 19.4±0.5 29.5±0.8 31.0±0.3 41.7±0.5 33.1±0.1 54.5±0.3 25.7±0.6 40.4±0.3 54.4±0.2 61.5±0.2 8.8±0.5 12.2±0.7 8.7±0.2 14.8±0.7 38.7±0.1 60.0±0.2 27.5±0.1 39.3±0.1

CLIP+Rand.Proj. 18.1±0.7 28.5±0.8 61.7±1.3 71.7±0.8 34.5±0.3 55.0±0.5 26.8±0.5 42.0±0.8 41.3±0.2 49.8±0.2 9.7±0.7 13.2±1.0 12.5±0.5 18.5±1.2 29.3±0.6 47.7±0.5 29.2±0.5 40.8±0.7

Table S5: Comparison of PCA-Whitening vs Random linear projection. For the latter, the average of 3 seeds is shown.


