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Figure 9. Network architecture of Style Encoder.
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Figure 10. Network architecture of Structural Encoder.

1. Network Architecture

We present the design details of the proposed network
architecture for different components. To be consistent, the
resolution of all the input is 256× 256. The input channels
are set to 3 for a RGB image and 18 for a structural pose
map. As depicted in Figure 9− 13, to simplify the nota-
tions, we use “IN” to represent Instance Normalization [19],
“Conv k×k, s#” to represent a convolutional layer with ker-
nel size k × k and stride #. For example, “Conv 4× 4, s2”
indicates kernel size 4 × 4 and stride 2. With appropriate
padding, we set the convolution layer with stride 2 to down-
scale the features to half of the input resolution.

1.1. Encoder

Style Encoder. The Style Encoder is designed to extract
style code of the source image which is a vector that con-
sists of dense semantic features from the source image. As
shown in Figure 9, it includes 6 encoder blocks that pro-
gressively downsample the input features from 256 × 256
to 4× 4. At the bottleneck of the encoder, we use an adap-
tive average pooling layer with kernel size 4×4 to compute
the style vector.

Structural Encoder. The Structural Encoder is used to
encode the spatial details of the target pose and shape so that
it can produce a spatially aligned content in the final out-
put image. Apart from cascaded convolutional blocks, we
also leverage a recurrent flow at the bottleneck to maintain
spatio-temporal information, as indicated in Figure 10. In
this recurrent operation, we concatenate the input features
and the output with same resolution. We visualize an ex-
ample of output features in the Figure 10. The regions with
key structural guidance such as eyes, hands or legs are well
highlighted. The features with fading effect represent the
hidden motion information. It indicates the effectiveness on
extracting temporal information of the proposed recurrent
Structural Encoder.

1.2. Discriminator

The discriminator is an essential element in our network
to formulate the adversarial loss. As shown in Figure 11,
there are two discriminators including the Spatial Discrim-
inator and Temporal Discriminator in our framework. Dur-
ing training implementation, we randomly select a frame
(4D tensor) from a mini-batch to calculate the spatial ad-
versarial loss while using the whole mini-batch (5D tensor)
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Figure 11. Overview of network architecture, including Spatial Discriminator and Temporal Discriminator.
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Figure 12. Network architecture of Spatial Discriminator.
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Figure 13. Network architecture of Temporal Discriminator.

to compute the temporal adversarial loss.
Spatial Discriminator. The Spatial Discriminator is

used to mimic the distribution of the training set by discrim-
inating whether the input pair is real or fake. We demon-
strate the network architecture in Figure 12. Different from
traditional GANs that using a single image as the input, we
concatenate a generated image and a ground truth by chan-
nel dimension as a paired input, like PatchGAN [5]. There
are 3 encoder blocks that progressively to reduce the res-
olution of input features from 256 × 256 to 32 × 32. We
use a convolution layer with kernel size 4× 4 and the Leak-
lyReLU [14] activation function to extract the patched fea-
tures. Finally, we apply the least square error [13] to com-
pute the statistical distance.

Temporal Discriminator. The temporal Discriminator
is used to optimize the temporal consistency in time and
feature channels of a mini-batch by using a 3D CNN model.

During training, we collect the output image Ĩi one by one
from time step i − N to i + N . Similar with the Spatial
Discriminator that concatenating the paired input images,
we concatenate the generated sequence Ĩi−N :i+N and the
target sequence Ii−N :i+N by channel dimension as input.
As indicated in Figure 13, there are 4 encoder blocks that
progressively to downsample the input features from 256×
256 to 16 × 16. The N is equal to 3 if the total iteration
sequence length is 7. The major design of the encoder block
is similar with one of Spatial Discriminator. We use 3D
convolutional layer with kernel size 3 × 3 × 3 or 3 × 3 ×
4 to downscale the input features by half. Moreover, we
apply the average pooling layer to produce a downsampled
residual map to preserve the feature signals. We use the
weighted sum to fuse the output features and the residual
branch.



Models SSIM↑ PSNR↑ L1↓ FID↓ LPIPS↓ FVD-Train128f↓ FVD-Test128f↓
w/o L1 loss N/A 15.147 0.117 379.232 0.388 2575.616±14.795 2626.936±29.864

w/o perceptual loss 0.914 23.767 0.0323 15.336 0.0518 174.383±2.413 159.217±6.818
w/o style loss 0.905 22.933 0.0373 14.956 0.0569 180.374±2.169 172.143±15.127
w/o CX loss 0.908 23.179 0.0349 14.345 0.0538 171.824±2.143 155.876±7.937

w/o spatial adv loss 0.913 23.576 0.0329 14.394 0.0506 201.065±3.101 187.118±8.642
w/o temporal adv loss 0.916 23.892 0.0312 14.466 0.0487 178.727±2.317 165.524±7.654

Full model 0.918 24.071 0.0302 14.083 0.0478 168.275±2.564 148.253±6.781

Table 3. Quantitative ablation study on the objective loss functions evaluated on the FashionVideo benchmark. The best scores are
highlighted in bold format.

Source image 

Target pose

Target image 

Figure 14. Pose transfer result on in-the-wild conditions.

2. Ablation Study on Loss Function

We conduct a comprehensive quantitative experiment on
the analysis of objective loss functions in Table 3. We for-
mulate the loss functions in three domains - pixel domain,
semantic domain, and spatio-temporal domain to not only
synthesize high-fidelity person image but also maintain de-
tails of person identity with characteristics of garments in
the source image. The evaluation protocol is designed to
observe the importance of each loss function by excluding
the target function.

2.1. Pixel Domain

We mainly use L1 loss to minimize the absolute value of
pixel distance between the generated image and the target
image. The worst results on the model w/o L1 loss indi-
cates the crucial role on generating acceptable images in
our model. It is because pixel-wise comparison can pre-
serve more global statistics such as basic appearance and
shape of a person.

2.2. Semantic Domain

The losses on semantic domain are used to enhance the
vividness of the generated images by comparing the features
with different correspondence operations. It includes model
w/o perceptual loss, model w/o style loss, and model w/o CX
loss. The outcome shows that they all provide positive gains
to the evaluation metrics in different aspects. The model w/o
perceptual loss shows an 8% increment on the FID score.
It represents the effectiveness on minimize the distribution
distance between the generated results and the training set.
The model w/o style loss and model w/o CX loss have major
contributions on SSIM, PSNR, L1, and LPIPS scores. It
indicates that these two losses can maintain more structural
details on the generated images.

2.3. Spatio-temporal Domain

We mainly use adversarial losses to strengthen the
spatio-temporal consistency of the generated sequence. The
results of model w/o spatial adv loss and model w/o tem-
poral adv loss demonstrates a large margin on the FVD-



Models FLOPs
GFLA [18] 126.28G

Impersonator++ [12] 101.29G
DPTN [22] 30.97G
NTED [17] 103.99G

Ours 16.92G

Table 4. FLOPs comparison of the state-of-the-arts. The best
scores are highlighted in bold format.

train128f and FVD-test128f scores compared to the final
model. It can certify that these two losses can maintain
spatio-temporally coherent information in our framework.

3. Mesh Flow Computation
Following previous work [9, 12], we demonstrate the

procedures to obtain a mesh flow. Based on the SMPL
model, we can obtain the source weak perspective camera
K ∈ R3×1, explicit representation V ∈ R6890×3, raster-
ized face function H ∈ R13776×3, the barycentric weight
index map of the triangulated face W ∈ RH×W×3, the 2D
projected face index map of source mesh Cs ∈ RH×W×1

and target mesh Ci. We project the explicit vertices into a
2D coordinate system and get the triangulated faces V̂ ∈
R13776×3×2 = P (V,K,W ). By matching the face index
map of source mesh Cs and target mesh Ci, we can get the
visible face index vector Q ∈ R13776. Finally, we get the
Fi→s by multiplying the correspondence of source W with
the visible triangulated faces V̂ , i.e.

Fi→s = W × (Q× V̂ ), (14)

where × indicates matrix multiplication operation.

4. Computation Analysis
We further analyze the computational cost in term of

FLOPs. As indicated in Table 4, our method just produces
half as many FLOPs as the previous optimal SOTAs.

5. Transferring In-the-wild Images
We provide some results conditioned on some in-the-

wild images in Figure 14 to demonstrate the generality.
The resolution (256× 256) is consistent with the evaluation
datasets [11, 21]. The source images are randomly chosen
from the Internet.

6. Limitation
With the success of bidirectional deformable modula-

tion, it can synthesize a spatio-temporal video based on a
set of noisy poses. However, the reconstruction of missing

background is limited. It is believed that the deformable
motion modulation is biased to capture the motion. For
static background, the capability of motion offset and ac-
tivation unit are not directly co-related. It could fail to re-
cover some complex natural backgrounds such as trees.

7. Rationale behind DMM
We further elaborate the rationale behind the deformable

demodulation. The motivation of weight demodulation is to
base normalization on the expected statistics of the incom-
ing style code without using instance normalization. Be-
cause instance normalization considers the average statis-
tics of the instance-wise style features, but it produces sig-
nificant artifacts when scaling the image as mentioned in
StyleGANv2. Eqs 3 aims to scale the convolution weights
according to the incoming style code so that it can com-
bine the style statistics with the kernels. Eqs 4 proposes to
normalize the weights by rescaling the L2 norm of itself so
that it can restore the output features back to unit standard
deviation.

8. Ablation Study on Hyperparameter
We conduct some ablation experiments on the hyperpa-

rameters of loss functions in Table 5. The evaluation proto-
col is designed to observe the importance of each loss func-
tion by fine-tuning the hypermeters.

9. Related Works
9.1. Diffusion Model

Recently, the diffusion model gains stunning generative
performance on image synthesis field. Dhariwal et. al. [2]
proposed a guided diffusion model that can extend the con-
ditions from noisy to some structural signals. Ju et. al. [6]
proposed a skeleton-guided diffusion model the transfer the
style of source image to a key-point-based maps. However,
the characteristics and identities of the source image could
not be preserved in the generated images. The UPGPT [1]
suggested a diffusion model that making use of textural de-
scription to embed the texture information. However, due
to the limited generalization of text description, it is hard to
formulate a precise text embedding for some textures with
unique patterns such as labels or logos. DreamPose [7] pro-
pose an image-to-video diffusion model that using stable
diffusion [4] to fuse CLIP encoder [16] and variational au-
toencoder to encode a source image. However, the lack of
temporal consistency conditioned on noisy poses is still a
challenging problem in this model. We fully appreciate the
beauty of diffusion model that sparking the field of image
synthesis recently. Although diffusion model can produce
higher diversity image compared to GAN-based method,
it is the smallest factor to drive video-based human pose



Models SSIM↑ PSNR↑ L1↓ FID↓ LPIPS↓ FVD-Train128f↓ FVD-Test128f↓
λl1 = 0.5 0.911 23.466 0.0336 16.355 0.0530 176.624±2.640 152.437±6.616
λl1 = 5 0.913 23.737 0.0326 14.619 0.0500 180.083 ±2.175 152.407±7.776

λtemp = 1 0.911 23.446 0.0334 15.604 0.0523 180.883±2.265 157.166±6.393
λtemp = 10 0.913 23.526 0.0334 16.499 0.0531 176.185±2.340 157.942±6.180
λper = 100 0.912 23.762 0.0328 15.280 0.0522 177.532±2.236 156.503±6.426
λper = 1000 0.910 23.505 0.0344 15.519 0.0520 186.654±3.157 175.013±7.975
λgram = 0.1 0.911 23.293 0.0346 15.864 0.0532 177.645±1.722 157.355±7.569
λgram = 1 0.914 23.650 0.0330 15.504 0.0520 188.588±2.429 161.876±7.981
λcx = 0.5 Nan 15.147 0.1175 379.233 0.1175 2576.074±18.307 2628.241±31.276
λcx = 1 0.912 23.501 0.0336 14.938 0.0336 185.161±2.847 167.907±7.804

Full model 0.918 24.071 0.0302 14.083 0.0478 168.275±2.564 148.253±6.781

Table 5. Quantitative ablation study on the hyper parameters of objective loss functions evaluated on the FashionVideo benchmark. The
best scores are highlighted in bold format.

transfer to do better because it requires the output should
be appearance-aligned with the source image. Our GAN-
based solution still has its merits in term of fast sampling
and comparatively high-quality synthesis. Moreover, our
main contributions focus more on improving the spatiotem-
poral consistency by smoothing the jittering poses. They
are intuitive, effective and easily applied to other methods
to enhance the performance as well.

9.2. Neural Rendering

Some related work to neural rendering for human ap-
pearance transfer and reenacting are also interesting. In-
stead of deformable human body models like SMPL,
Prokudin et. al. [15] proposed SMPLpix to rasterize a
sparse set of 3D mesh vertices into photorealistic images
instead of using computer graphic engine. Gomes et. al. [3]
proposed a shape-aware retargeting method based on a hy-
brid image-based rendering technique to perform human
motion transfer. Liu et. al. [10] proposed to combine two
convolutional neural networks to disentangle the learning
of time-coherent information from the embedding of the
human in 2D space. Kwon et. al. [8] introduced a Neu-
ral human performer that can learn a generalizable radiance
field by a temporal transformer to aggregate tracked visual
features. Xu et. al. [20] extended the uniform occupancy
prior of traditional neural radiance field to a structured im-
plicit human body model so that it can use signed distance
functions. The effort of the neural rendering for human ap-
pearance transfer is highly appreciated. Our method and
task are different from the neural rendering methods that
restricted to one model per actor (subject-specific). They
focus more on novel view synthesis, 3D reconstruction, and
texture map rendering.

10. Video Comparison for SOTAs

We randomly select some video demonstrations to
compare the visual quality with some state-of-the-art
methods. The videos are from FashionVideo [21]
and iPER [11] benchmarks. Please find the attached
video supplementary iccv.zip file to enjoy the video clips.
The default frame rate is 30fps.
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