
FreeDoM: Training-Free Energy-Guided Conditional Diffusion Model
(Supplementary materials)

This supplementary document is organized as follows:

• Section 1: More results to show the performance of FreeDoM.

• Section 2: The detailed setting strategy of the learning rate ρt.

• Section 3: The setting details of the efficient time-travel strategy.

• Section 4: The relationship between FreeDoM and zero-shot image restoration methods.

1. More Results
In this section, we provide more generated results to demonstrate the effects of FreeDoM under various conditions and the

applications FreeDoM support with training-required latent diffusion models.
We show the results of various conditions in Fig. 1 (text-to-image), Fig. 2 (segmentation-to-image), Fig. 3 (sketch-to-

image), Fig. 4 (landmark-to-image), and Fig. 5 (id-to-image).
We show the results with latent diffusion models in Fig. 6 (style guidance + Stable Diffusion [7]), Fig. 7 (style guidance

+ Scribble ControlNet [12]) and Fig. 8 (face ID guidance + Human-pose ControlNet [12]). In order to further illustrate the
implementation process of the application with the Human-pose ControlNet demonstrated in Fig. 8, we provide Fig. 9.

Prompt: “Bald” Prompt: “Asian”

Prompt: “Beard” Prompt: “Angry”

Prompt: “This woman is attractive and has straight hair. 
She is wearing heavy makeup. She is smiling, and young.”

Prompt: “He wears necktie. He has pointy nose, 
and bangs. He is young.”

Prompt: “This woman has brown hair, big nose, 
wavy hair, high cheekbones.” Prompt: “He is an black man, very serious. He has a beard.”

Figure 1. Generated human faces for the text-to-image task. We choose four short and four long prompts to demonstrate the performance
of FreeDoM. The characteristics described by these short prompts are experientially seldom seen in the training set. These results are
consistent with the given conditions and have good diversity.
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Figure 2. Generated human faces for the segmentation-to-image task. We choose four parsing maps to guide the generation process and
output the parsing maps of the generated results to check the matching degree with given conditions. We can see that these results are
consistent with the given conditions and have good diversity.
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Figure 3. Generated human faces for the sketch-to-image task. We choose four sketches to guide the generation process and output the
sketches of the generated results to check the matching degree with the given conditions. These results are consistent with the given
conditions and have good diversity.
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Figure 4. Generated human faces for the landmark-to-image task. We selected landmarks of four faces from different angles to guide the
generation process and output the landmarks of the generated results to check the matching degree with given conditions. These results are
consistent with the given conditions and have good diversity.
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Figure 5. Generated human faces for ID-to-image task. We choose the face IDs of six celebrities as the reference to guide the generation
process. These results are consistent with the given conditions and have good diversity.



“a photograph of an 
astronaut riding a horse” “cat wearing sunglasses”

“The android is walking by 
a tree” “Batman flies in the air” “Einstein”

“Santa Claus” “Darth Vader”
“A coconut tree on the 

beach”
“a knight with a skull mask”

“A huge castle”

“molecular cell containing a 
neon helix nebular” “Eiffel Tower” “super Mario” “Walter White” “Princess Zelda”

“a photo of a pikachu 
wearing a cute hat”

“a pirate girl with leather 
jacket”

“a young girl sightseeing 
above the urban city”

“the highest mountain in the 
universe” “chimpanzee”

“Two sparrows on the 
branch” “Goldfish in the bathtub”“butterfly” “Master is waving a sword” “Blooming lotus”

Figure 6. Generation results of training-free style guidance with text-to-image Stable Diffusion [7]. We choose five style images to guide
the style of the results generated by Stable Diffusion. These generated results well match the provided style. Zoom in for best view.



Figure 7. Generated results of training-free style guidance with Scribble ControlNet [12]. We choose four style images to guide the style
of results generated by ControlNet. These generated results well match the provided style. Zoom in for best view.
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Figure 8. Generated Results of face ID guidance with Human-pose ControlNet [12]. By fixing random seeds, we can see the effects before
and after introducing the ID guidance. These ID-guided results well match the given IDs in the face area. Zoom in for best view.
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Figure 9. Visualization of the whole training-free face ID guidance process using FreeDoM in Fig. 8. We first decode the clean latent code
x0|t into the image domain. Then we detect the position of the human face and the corresponding landmarks. After getting the landmarks,
we compute the affine parameters, which are used to perform an affine transformation to extract the aligned face area from the original
decoded image. Finally, we compute the ID-based energy function between the aligned and reference faces. The gradient of the energy
function to xt will be used to update xt−1. Note that the computation of the Decoder and affine transformation is all differentiable, so the
energy gradient to xt is computable. Zoom in for best view.



2. Setting Strategy of Learning Rate
In the experiment, we found that the setting of the learning rate is the key to the effectiveness of FreeDoM. The best

learning rate configuration and factors differ according to data domains, pre-trained models, and tasks. This section will
introduce the relatively simple and effective learning rate setting methods for three situations summarized in our experiments
for the community to reproduce.

• In the experiments on the ImageNet data domain, we try to determine the energy function gradient’s learning rate
according to the unconditional score’s step size. This strategy ensures the stability of the generation process to avoid
the collapse of results due to excessive step size. At the same time, this strategy only needs to adjust a factor that
balances the unconditional score step size and the step size of the energy function gradient, which is convenient and
feasible. The specific formula is as follows:

ρt = 0.05
||βt · s(xt, t)||2

||gt||2
, (1)

where s(xt, t) predicts the unconditional score, βt is the pre-defined parameter and gt denotes the energy function
gradient.

• For the experiments of latent diffusion models (Stable Diffusion [7] and ControlNet [12]), since they are classifier-free
models, a better strategy is to determine the learning rate of the energy function gradient by referring to its conditional
text-guided step size. In classifier-free methods, the conditional score function is computed as:

∇xt log p(xt|c) ≈ s(xt, t, ∅) + r · (s(xt, t, c)− s(xt, t, ∅)), (2)

where the score predictor has a conditional input c and allows this input to be null (denoted as ∅). The factor r denotes
the learning scale of the conditional guidance. In order to determine the learning rate in this situation, the specific
formula is as follows:

ρt = 0.2
||r · βt · (s(xt, t, c)− s(xt, t, ∅))||2

||gt||2
, (3)

where βt is the pre-defined parameter and gt denotes the energy function gradient.

• For the human face experiments, we choose a simple but effective learning rate setting strategy, ρt = k ·
√
ᾱt and k is

different for each type of conditions. The specific values of k are shown in Tab. 1.

conditions texts segmentation maps sketches landmarks face IDs
k 100 0.2 20 500 100

Table 1. The value of k under different conditions, which is an experimental choice.

In order to avoid artifacts in the final results, we will stop the guidance in the late part of the refinement stage (around
200-th to 1-th time step), which is a helpful trick to get satisfactory results.

3. Setting Details of the Efficient Time-Travel Strategy
In this section, we will introduce the configuration details related to the efficient time-travel strategy:

• In all the experiments of human faces, we found that the algorithm without the time-travel strategy can get enough
satisfactory results, so we do not use the time-travel strategy.

• In the experiment on the ImageNet data domain, we only use the efficient time-travel strategy with rt = 10 during the
semantic stage between 800-th and 500-th time steps.

• In the experiment based on Stable Diffusion [7] and ControlNet [12] with style guidance, We only use the efficient
time-travel strategy with rt = 3 during the semantic stage between 800-th and 500-th time steps.

• An interesting discovery is that in the ControlNet-based face ID guidance experiments, we only need to add guidance
without the efficient time-travel strategy in the refinement stage (between 500-th and 1-th time steps) to get acceptable
results. A reasonable explanation is that the modification of face ID belongs to the modification of detail texture, which
is the responsibility of the refinement stage. By dividing the whole sampling process into different stages, we can not
only have a deeper understanding of the functions of each stage but also use this understanding to accelerate the overall
sampling.



4. Relationship between FreeDoM and Zero-Shot Image Restoration Methods
The proposed FreeDoM is a framework that can support various conditions, including the degraded images in the image

restoration tasks. Many existing zero-shot image restoration methods [1, 2, 3, 4, 5, 6, 8, 9, 11, 10] can be considered special
cases of FreeDoM. Their idea can be summarized as updating the clean intermediate result x0|t to meet the data consistency
constraint, y = A(x0|t), where y is a degraded image and A(·) is a linear or non-linear degradation operator. When dealing
with linear degradation, the degradation operator A(·) can be written into a matrix A.

Since the image restoration tasks can also be seen as particular conditional generation tasks, these zero-shot image
restoration methods can also be explained using the framework of FreeDoM. Take two typical examples: DPS [2] uses
−∇xt

||y−A(x0|t)||22 to update the intermediate results, which can be interpreted as a distance measurement function with-
out learning parameters to improve the matching degree between the restored image x0|t and the degraded image y in the
measurement space; DDNM [11] obtains that the update direction for linear noiseless tasks is −A†(Ax0|t − y) through the
derivation of Range-Null Space Decomposition, which can also be interpreted as an approximated analytical solution of the
gradient of the distance measurement function in DPS on linear cases.
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