
Supplementary Material for “LaPE: Layer-adaptive Position Embedding for
Vision Transformers with Independent Layer Normalization”

A. Limitation of Default Absolute PE Joining Method
In order to decouple the position information for each Transformer layer, we reparameterize the input of each encoder layer

and each Multi-Head Self-Attention (MSA) module, and find the defect of the default absolute PE joining method. In Vision
Transformers, the absolute position embedding (PE) is added to the patch embedding α at the beginning and propagated to
deeper layers through the skip connections. The input of each encoder layer can be rewritten as:

xl = xl−1 + x′l−1 + x′′l−1

= xl−2 + x′l−2 + x′′l−2 + x′
l−1 + x′′l−1

= x0 + x′
0 + x′′0 + ...+ x′

l−1 + x′′l−1

= α+ ω +

l−1∑
k=0

(x′k + x′′k)

= x̃l + ω,

(1)

where l is the index of layer, and x′, x′′ ∈ RN×D (N is the token number, D is the dimension) represent the output of each

MSA and MLP module (refer to Fig. 2 of our paper for more details). We use x̃l to represent α+
l−1∑
k=0

(x′k + x′′k). In this way,

we separate the input of each layer into two parts, PE and token embeddings.
We can further rewrite the input of each MSA module.

xl′ = MSAl(LNl(x̃l + ω))
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σω
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σω
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σx̃l+ω − σx̃l − σω
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= MSAl(λ1LNl(x̃l) + λ2LNl(ω) + λ3βl),

(2)

where l is the index of layer, LN represents the layer normalization operation, MSA represents the Multi-Head Self-Attention
module, γ ∈ R1×D and β ∈ R1×D are the trainable affine transformation coefficients in LN, E(·) ∈ RN×1 and σ(·) ∈ RN×1

are the token-wise mean and standard deviation. We use λ1, λ2, λ3 ∈ RN×1 to represent the coefficients of LN(x̃l), LN(ω),
βl, respectively. In this way, we successfully decouple the position information λ2LN(ω) for each Transformer layer (we
ignore some minor couplings in ω).



From Eq. 2, we can see that the position embedding ω shares the same LN with the token embeddings x̃l. However,
the position and token embeddings represent different information and have different embedding distributions. When they
are coupled together, the affine parameters in LN have to trade off between them, limiting the expressiveness of position
embedding.

B. PyTorch-Like Pseudo Code Implementation
We provide PyTorch-like codes here for easier understanding and better reproducibility of our proposed LaPE.
For the default absolute PE joining method, Vision Transformers (VTs) add the position embedding (PE) to the patch

embedding before entering Transformer encoders, and deliver the same PE to each encoder layer. We take the framework of
DeiT [12] for example:

1 # Attention: Multi-Head Self-Attention calculation
# MLP: Multi-Layer Perceptron: Linear+Gelu+Linear+Dropout

3 def Block(x):
x = x + Attention(LayerNorm1(x))

5 x = x + MLP(LayerNorm2(x))
return x

7

# DeiT with PE joined by default
9 def VisionTransformer(x):

x = Patch_embed(x)
11 x = cat(cls_token, x)

x = x + pos_embed # Eq.(2): add PE to the patch embedding
13 for _ in range(depth):

x = Block(x)
15 x = Head(x[:, 0])

return x

In contrast, LaPE provides independent LNs for PE and token embeddings in each layer, and adds the layer normalized PE
and token embeddings together as the input of MSA, and the PE is delivered progressively among layers. The implementation
is as follows:

# Attention: Multi-Head Self-Attention calculation
2 # MLP: Multi-Layer Perceptron: Linear+Gelu+Linear+Dropout

def LaPE_Block(x, pos_embed):
4 # Eq.(9): use independt LN to PE and token embedding

x = x + Attention(LayerNorm1(x)+LayerNorm2(pos_embed))
6 x = x + MLP(LayerNorm3(x))

pos_embed = LayerNorm2(pos_embed) # Eq.(11): pass PE progressively
8 return x, pos_embed

10 # DeiT with LaPE
def VisionTransformer(x):

12 x = Patch_embed(x)
x = cat(cls_token, x)

14 x = x # Eq.(8): pass the patch embedding to encoders
for _ in range(depth):

16 x, pos_embed = LaPE_Block(x,pos_embed)
x = Head(x[:, 0])

18 return x



Dataset Model Learning Rate
Learning Rate

Scheduler
Weight
Decay

Batch
Size Epochs

Warm-up
Epochs

ImageNet [2]

DeiT [12] 5e-4
cosine,

min lr=1e-5 0.05 1024 300 5

T2T-ViT [16] 1e-3
cosine,

min lr=1e-5 0.03 1024
300+10

(cool down epochs) 10

Swin [8] 5e-4
cosine,

min lr=5e-6 0.05 512 300 20

CeiT [15] 5e-4
cosine,

min lr=1e-5 0.05 1024 300 5

Cifar-10 [6]
ViT Lite [4]

55e-5 cosine,
min lr=1e-5 0.06 128 300+10

(cool down epochs) 10CVT [4]

CCT [4]

Cifar-100 [6]
ViT Lite [4]

6e-4 cosine,
min lr=1e-5 0.06 128 300+10

(cool down epochs) 10CVT [4]

CCT [4]

Table I. Image classification experimental settings on ImageNet, CIFAR10 and CIFAR100.

C. Analysis on Position Correlation
Many works studying how PE works in Transformers reveal that PE works as a position inductive bias [3, 13, 14, 5]. Specifically, PE

provides its position correlation to the Query-Key product in Multi-Head Self-Attention (MSA) calculation, and such correlation guides
tokens to attend more to the adjacent tokens. For a better understanding, we can explain it with equations of the Query-Key product in
LaPE-based VTs. The Query-Key product of MSA in lth layer is:

QKT = (LNx|l(xl) + LNω|l(ωl))WQWK
T(LNx|l(xl) + LNω|l(ωl))

T

= LNx|l(xl)WQWK
TLNx|l(xl)

T + LNx|l(xl)WQWK
TLNω|l(ωl)

T

+ LNω|l(ωl)WQWK
TLNx|l(xl)

T + LNω|l(ωl)WQWK
TLNω|l(ωl)

T

(3)

where WQ and WK represent the linear transformation matrix.
In Eq. (3), we split the Query-Key product into four items, which represent token-token correlation, token-position correlation, position-

token correlation, and position-position correlation. The 2nd and 3rd items are proved to be meaningless [5], as the image semantics
(represented by token embedding) has little correlation with its position (represented by PE). The 4th item are correlations between pro-
jected LNω|l(ωl), which is essentially the position correlation. Moreover, such correlation can be measured with the cosine similarity of
LNω|l(ωl).

In this paper, we decouple each layer’s λ2LNl(ω) for default method and LNω|l(ωl) for LaPE, and visualize their position correlations.
The visualization results of Fig. 3 and Fig. 4 in our main text verify the superiority of our proposed LaPE.

D. Experimental Settings
D.1. Image Classification

For image classification, ViT Lite, CVT, and CCT [4] on CIFAR use the SGD [10] as the optimizer, while DeiT [12], T2T-ViT [16],
Swin [8] and CeiT [15] on ImageNet-1K all use the Adamw [9]. We list the hyper-parameters and settings used in our paper in TableI,
which are the same as those used in the original papers.

D.2. Object Detection
For object detection, we conduct experiments on ViT-Adapter[1]. The settings are slightly different from those used in the original

paper, considering we conduct experiments on 4 GPUs with a batch size of 8, while the original paper uses 8 GPUs with a batch size of 16.
The detailed training settings are shown in Table II.



Dataset Name Method Backbone
Pre-trained

Model
Crop
Size

Optimizer LR
LR

Scheduler
Weight
Decay

Batch
Size

COCO 2017 [7] ViT-Adapter [1] Mask R-CNN
ViT-Adapter-Ti DeiT-Ti

1024 AdamW 1e-4 3x+MS 0.05 8
ViT-Adapter-S DeiT-S

Table II. Object detection experimental settings on COCO val2017.

Dataset Name Method Backbone
Pre-trained

Model
Crop
Size

Optimizer LR
LR

Scheduler
Weight
Decay

Batch
Size

ADE20K [17]

Segmenter [11]
Seg-Ti-Mask/16 DeiT-Ti DeiT-Ti

512 SGD 1e-3 160k 0. 8
Seg-S-Mask/16 DeiT-S DeiT-S

ViT-Adapter [1] UperNet
ViT-Adapter-Ti DeiT-Ti

512 AdamW 2e-5 160K 0.05 8
ViT-Adapter-S DeiT-S

Table III. Semantic segmentation experimental settings on ADE20K. Seg-Ti/S-Mask/16 represents methods using mask transformer as
the decoder with 16×16 input patch size.

D.3. Semantic Segmentation
For semantic segmentation, we conduct experiments on Segmenter [11] and ViT-Adapter [1]. The training settings are the same as those

introduced in original papers, except for the pre-trained model of Segmenter [11] and the batch size of ViT-Adapter. For Segmenter, we
use the DeiT (pre-trained on ImageNet-1K) to initialize the model, different from ViT (pre-trained on ImageNet-22K) used in the original
paper. For ViT-Adapter, we conduct experiments on 4 GPUs and with a batch size of 8, compared with 8 GPUs and a batch size of 16 in
the original paper. The detailed training settings are shown in Table III.

E. Visualization
In our main text, we provide partial layer’s visualization of the position correlation of T2T-ViT [16] and DeiT [12]. Here we supply the

complete visualization for them.
In Fig. I, the visualization results strongly support our analysis: (1) The shared LN in the default PE method trades off between token

embedding and PE. (2) LaPE significantly enhances the expressiveness of PE. As shown in Fig. I (a), the position correlation in the first
layer is obviously adjusted, because it no longer has the same 1-D correlation as sinusoidal PE, which means the affine parameters in LN
learn to adjust the position correlation of PE. However, the position correlations in the latter layers are almost monotonic and unadjusted,
which means the affine parameters do not learn to enhance the expressiveness of PE. This phenomenon verifies our analysis (1). As shown
in Fig. I (b), the position correlations are adjusted into 2-D, as they have both horizontal and vertical perception. Moreover, the position
correlations are layer adapted into hierarchical, which verifies the analysis (2).

In Fig. II, the position correlations of default PE are monotonic, while the correlations of LaPE are hierarchical, which better fits the
way Vision Transformers process images.



l=1 l=2 l=3 l=4 l=5 l=6 l=7

(a) T2T-ViT-7 with default PE

(b) T2T-ViT-7 with LaPE
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Figure I. Visualization of the position correlations in each layer for T2T-ViT-7. (a) The position correlation is obviously changed into
2-D in the first layer, while the correlations are 1-D and monotonic in the latter layers. This phenomenon demonstrates that the affine
parameters in LN trade off between token embedding and PE, which limits the expressiveness of PE. (b) The position correlations are 2-D
and change from local to global, which means LaPE can improve the expressiveness of PE greatly.

(a) DeiT-Ti with default PE

(b) DeiT-Ti with LaPE

l=1 l=2 l=3 l=4 l=5 l=6 l=7 l=8 l=9 l=10 l=11 l=12

Figure II. Visualization of the position correlations at different layers for DeiT-Ti. (a) The default position correlations are monotonic.
(b) The position correlations of LaPE change from local to global as the layer goes deeper.
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