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Abstract

This document provides additional material that is supplemental to the main submission. Section 1 outlines finer imple-
mentation details of our model, and provides a link to our released code. Section 3 provides qualitative sampling results
using stochastic conditioning on RealEstate10K. Section 4 describes the additional qualitative results that can be found in
the included supplemental webpage. Section 5 provides visualizations of quantitative TSED results, and describes an inter-
active demo of the metric that can be found on the supplemental webpage. Section 6 discusses the limitations of our method
for novel view synthesis.

1. Architecture Details
In this section, we provide additional details of our model described in Section 3.2 of the main paper. Our model is based

on Noise Conditional Score Network++ (NCSN++) [8]. An overview of the main backbone is provided in Tables 1 and 2.
Two streams of the backbone are used to process the conditioning and generated image. We modify the original architecture
by adding cross-attention layers throughout the backbone, which attend to features in the opposite stream. The residual blocks
are based on the residual blocks used in BigGAN [1]. Upsampling and downsampling is also performed in the network using
BigGAN residual blocks [1]. Inputs to the backbone encoder are provided at various layers using a multi-scale pyramid.
Outputs of the network are accumulated from multiple layers of the decoder using a multi-scale residual pyramid. Specific
implementation details can be found in the code release: https://yorkucvil.github.io/Photoconsistent-N
VS/.

2. TSED Sensitivity Analysis.
A drawback to using epipolar geometry to measure consistency between correspondences and the camera poses is the

potential for TSED to be insensitive to positional errors in the correspondences along epipolar lines. We empirically analyse
the sensitivity of TSED on ground truth image pairs from RealEstate10K [10] under three classes of camera motion: dominant
forward-backward motions, dominant left-right motions, and motion that contains more than ten degrees of azimuth rotation.
Using Terror = 2, we compute TSED over 100 random image pairs in each class while adding perturbations to the 2D positions
of the correspondences in each view by a constant magnitude along horizontal and vertical directions. In the ideal case when
TSED is maximally sensitive, it should show a sharp reduction when the perturbations have a magnitude of Terror or greater.
Results from our sensitivity analysis are shown in Fig. 1. As expected, TSED is least sensitive to horizontal perturbations for
when there are left-right camera motions since most of the epipolar lines are horizontal. For image-pairs with greater than 10
degrees of azimuth rotation, there are fewer horizontal epipolar lines, and TSED is more sensitive to horizontal perturbations
than with dominant left-right motion. The results also show that TSED is most sensitive for forward-backward motions since
the epipolar lines have a variety of orientations.
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Layer Output size Additional inputs Additional outputs
Input image 4 × 32 × 32 Skip 0,In Pyramid
ResBlock 256 × 32 × 32 Time emb.

Spatial Attn. 256 × 32 × 32
Cross Attn. 256 × 32 × 32 Cross, Rays Skip 1, Cross
ResBlock 256 × 32 × 32 Time emb.

Spatial Attn. 256 × 32 × 32
Cross Attn. 256 × 32 × 32 Cross, Rays Skip 2, Cross

ResBlockDown 256 × 16 × 16 Time emb.
Combiner 256 × 16 × 16 In Pyramid 1 Skip 3
ResBlock 256 × 16 × 16 Time emb.

Spatial Attn. 256 × 16 × 16
Cross Attn. 256 × 16 × 16 Cross, Rays Skip 4, Cross
ResBlock 256 × 16 × 16 Time emb.

Spatial Attn. 256 × 16 × 16
Cross Attn. 256 × 16 × 16 Cross, Rays Skip 5, Cross

ResBlockDown 256 × 8 × 8 Time emb.
Combiner 256 × 8 × 8 In Pyramid 2 Skip 6
ResBlock 256 × 8 × 8 Time emb.

Spatial Attn. 256 × 8 × 8
Cross Attn. 256 × 8 × 8 Cross, Rays Skip 7, Cross
ResBlock 256 × 8 × 8 Time emb.

Spatial Attn. 256 × 8 × 8
Cross Attn. 256 × 8 × 8 Cross, Rays Skip 8, Cross

ResBlockDown 256 × 4 × 4 Time emb.
Combiner 256 × 4 × 4 In Pyramid 3 Skip 9
ResBlock 256 × 4 × 4 Time emb.

Spatial Attn. 256 × 4 × 4
Cross Attn. 256 × 4 × 4 Cross, Rays Skip 10, Cross
ResBlock 256 × 4 × 4 Time emb.

Spatial Attn. 256 × 4 × 4
Cross Attn. 256 × 4 × 4 Cross, Rays Skip 11, Cross
ResBlock 256 × 4 × 4 Time emb.

Spatial Attn. 256 × 4 × 4
ResBlock 256 × 4 × 4 Time emb.

Table 1: NSCN++ U-Net backbone encoder. ResBlocks are
BigGAN [1] style residual blocks, ResBlocksDown layers
are the same, but configured with a downsampling option.
Time emb. is the time information provided for the diffusion
model. Skip inputs are skip connections that go to the de-
coder. Rays are the camera ray conditioning, and Cross is a
cross-attention connection to the other stream.

Layer Output size Additional inputs Additional outputs
Encoder input 256 × 4 × 4

ResBlock 256 × 4 × 4 Time emb., Skip 11
ResBlock 256 × 4 × 4 Time emb., Skip 10
ResBlock 256 × 4 × 4 Time emb., Skip 9

Spatial Attn. 256 × 4 × 4
Cross Attn. 256 × 4 × 4 Cross, Rays Cross
Conv3 × 3 256 × 4 × 4 Out Pyramid 1
ResBlockUp 256 × 8 × 8 Time emb.

ResBlock 256 × 8 × 8 Time emb., Skip 8
ResBlock 256 × 8 × 8 Time emb., Skip 7
ResBlock 256 × 8 × 8 Time emb., Skip 6

Spatial Attn. 256 × 8 × 8
Cross Attn. 256 × 8 × 8 Cross, Rays Cross
Conv3 × 3 256 × 8 × 8 Out Pyramid 2
ResBlockUp 256 × 16 × 16 Time emb.

ResBlock 256 × 16 × 16 Time emb., Skip 5
ResBlock 256 × 16 × 16 Time emb., Skip 4
ResBlock 256 × 16 × 16 Time emb., Skip 3

Spatial Attn. 256 × 16 × 16
Cross Attn. 256 × 16 × 16 Cross, Rays Cross
Conv3 × 3 256 × 16 × 16 Out Pyramid 3
ResBlockUp 256 × 32 × 32 Time emb.

ResBlock 256 × 32 × 32 Time emb., Skip 2
ResBlock 256 × 32 × 32 Time emb., Skip 1
ResBlock 256 × 32 × 32 Time emb., Skip 0

Spatial Attn. 256 × 32 × 32
Cross Attn. 256 × 32 × 32 Cross, Rays Cross
Conv3 × 3 256 × 32 × 32 Out Pyramid 4

Table 2: NSCN++ U-Net backbone decoder. ResBlocks are
BigGAN [1] style residual blocks, ResBlocksUp layers are
the same, but configured with an upsampling option. Time
emb. is the time information provided for the diffusion model.
Skip inputs are skip connections coming from the encoder.
Rays are the camera ray conditioning, and Cross is the cross-
attention connection to the other stream.

3. Stochastic Conditioning on RealEstate10K
Previous work [9] proposed a heuristic for extending a novel view diffusion model to use an arbitrary number of source

views, called stochastic conditioning. Given m possible source views, each iteration of the diffusion sampling process is
modified to be randomly conditioned on one of the m views. Results using stochastic conditioning on CLEVR [4] are
provided in the main paper in Section 4.2. Previous work [9] used stochastic conditioning to condition on all previous
frames. We also apply this heuristic for generating sets of views on RealEstate10K [10], but we conditioned on up to two of
the previous frames. Qualitative results shown in Figure 2 exhibit a significant reduction in quality, and contain noticeable
artifacts. As a consequence, we did not include results based on stochastic conditioning with our method.

4. Additional Qualitative Results
Additional qualitative results are provided with an interactive viewer on our project page, https://yorkucvil.gith

ub.io/Photoconsistent-NVS/, under the RealEstate10K Qualitative Results - Out-of-Distribution Trajectories
and RealEstate10K Qualitative Results - In-Distribution Trajectories sections. The viewer allows the images along
a trajectory to be explored for multiple scenes, and sampling instances. Due to the stochastic nature of our model and
the baselines, different plausible extrapolations of the scene are shown in the different instances of sampling. Additional
qualitative results for Matterport3D [2] are also available on our project page, https://yorkucvil.github.i
o/Photoconsistent-NVS/, under the Matterport3D Qualitative Results - Out-of-Distribution Trajectories and
Matterport3D Qualitative Results - In-Distribution Trajectories sections.
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Figure 1: TSED sensitivity analysis for image pairs with different dominant camera motions using Terror = 2. TSED
scores are plotted for perturbations to the 2D correspondence locations with constant magnitude along horizontal and vertical
directions. Camera motion determines the orientations of the epipolar lines, which can make the metric insensitive in some
cases when many epipolar lines share the same orientation.
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(a) Source image. (b) Frame 5 of Markov sampling. (c) Frame 7 of Markov sampling.

(d) Frame 5 with stochastic conditioning. (e) Frame 7 with stochastic conditioning.

Figure 2: Comparison of generation using a Markov dependency vs stochastic conditioning with the previous two frames
as input. Both methods were generated using the same trajectory and source image. Notice the reduction of quality when
stochastic conditioning is applied.
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5. Additional Results with TSED
We provide additional quantitative results using TSED in Figures 3, 4, 5, and 6 for images generated using in-distribution

trajectories, and the orbit, spin, hop out-of-distribution trajectories, respectively. We sweep across a range of values for both
Terror and Tmatches. Pairs of images with less than Tmatches SIFT [5] matches, or a median SED [3] lower than Terror, are
considered not consistent. In all trajectory types, GeoGPT [7] is the most affected by Tmatches due to a lack of photometric
consistency, which leads to a low number of SIFT correspondences. The TSED for both variants of Lookout [6] do not vary
as severely as GeoGPT with respect to Tmatches. Image pairs generated with our method tend to yield more SIFT matches,
and are mainly affected by Terror. The quantitative TSED results in the main paper were evaluated at Tmatches = 10, but these
extended results show that our method yields higher TSED scores, remains consistent over a range of Tmatches values, in all
cases.

(a) GeoGPT (b) Lookout-noerror (c) Lookout (d) Ours

Figure 3: TSED computed using images generated over in-distribution trajectories. We sweep over a range of values for
Tmatches and Terror. The values are provided as the average number of consistent pairs per sequence out of 20.

(a) GeoGPT (b) Lookout-noerror (c) Lookout (d) Ours

Figure 4: TSED computed using images generated over orbit trajectory. We sweep over a range of values for Tmatches and
Terror. The values are provided as the average number of consistent pairs per sequence out of 9.

5



(a) GeoGPT (b) Lookout-noerror (c) Lookout (d) Ours

Figure 5: TSED computed using images generated over spin trajectory. We sweep over a range of values for Tmatches and
Terror. The values are provided as the average number of consistent pairs per sequence out of 9.

(a) GeoGPT (b) Lookout-noerror (c) Lookout (d) Ours

Figure 6: TSED computed using images generated over our hop trajectory. We sweep over a range of values for Tmatches and
Terror. The values are provided as the average number of consistent pairs per sequence out of 9.

To provide a better intuition on how symmetric epipolar distance (SED) [3] provides a measure of consistency, we provide
an interactive demo on our project page, https://yorkucvil.github.io/Photoconsistent-NVS/, under
the Visualization of SED section. The demo visualizes how SED varies in response to the positions of two correspondences
in a pair of views with known relative camera geometry. Each point creates an epipolar line on the opposite image, and the
minimal distance line between a point and a line on the same image is shown.

6. Limitations of Autoregressive Sampling
Our method and the baselines are limited by the use of sequential generation with a fixed budget for conditioning im-

ages. Regions that become occluded and subsequently disoccluded in a sequence are very likely to change appearance. For
example, conditioning on one image prevents information about previously disoccluded regions from informing the gener-
ation of those same regions beyond one frame. Qualitative examples of this phenomenon can be seen on our project page,
https://yorkucvil.github.io/Photoconsistent-NVS/, under the RealEstate10K Qualitative Results -
Out-of-Distribution Trajectories section, with the Spin motion. The described phenomenon can be observed at the edges
of the images with Spin motion, where those regions of the scene often move beyond the image boundaries before returning
in the future. A qualitative example of this is shown in Figure 7.

Conditioning on an arbitrary number of frames could theoretically solve this problem. However, the practicality of this
solution is limited by the ability to design models that can process an arbitrary number of inputs, and the model’s ability
to generalize to out-of-distribution camera poses (e.g., far away cameras in large scenes). Leveraging many images for
generation is a potentially significant direction for future work.
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(a) Initial image (b) Image after returning close to the initial camera position.

Figure 7: The initial frame and the final frame from a generated sequence with the spin motion. Notice the final frame has
returned to a location similar to the initial frame, but the bottom left region on the floor has changed appearance.
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