
Talking Head Generation with Probabilistic Audio-to-Visual Diffusion Priors
-Supplementary Material

Zhentao Yu1∗ Zixin Yin1,2*† Deyu Zhou1,3∗† Duomin Wang1

Finn Wong1 Baoyuan Wang1‡

1Xiaobing.AI.
2The Hong Kong University of Science and Technology.

3The Hong Kong University of Science and Technology (Guangzhou).
(yuzhentao,wangduomin,wangwenlan,wangbaoyuan)@xiaobing.ai

zyinaf@connect.ust.hk, dzhou861@connect.hkust-gz.edu.cn

I. Implementation Details
I.1. Pre-processing Details

In the training stage, all input images are cropped and
resized to 224 × 224 following the data pre-processing
pipeline of [6] with a face detector [11] and a landmark de-
tector [3]. For the pre-processing of audio input, we fol-
low [25] and convert the audio to mel-spectrogram with a
sampling rate of 16kHz. Note that for each video frame, we
extract an audio segment of 0.2s in the video centered at the
video frame to construct an audio-video training sample.

I.2. Network Details

Our main framework consists of 6 modules:

• Identity Encoder Eid, a pretrained ResNeXt50 [23].

• Visual Encoder Ev , also named as non-identity en-
coder. It is a MobileNetV2 [15] following the pretraining
scheme of LPD [4]. MLPol and MLPcl are applied after
Ev to project the visual feature fv into two subspace fvol
and fvcl, respectively. The dimension of MLPol and MLPcl

are both 512× 512. Then, they are separately mapped to
two complementary features, fvnl for non-lip and fal for lip
features through MLPnl and MLPa2l, respectively. The
dimension of MLPnl is 512 × 42 and the dimension of
MLPa2l is 512× 470.

• Audio Encoder Ea, a ResNet34 encoder from [5].

• Prior Network Pa2nl, a 6-layer Transformer [19] en-
coder, with 512-d tokens and 1024-d fully forward layers.
The positional embeddings are learnable. Note that our
diffusion prior and auto-regressive prior networks share
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the same architecture but with different attention mech-
anisms, noted as bidirectional attention and causal atten-
tion, respectively. The max length of the input tokens of
the encoder is set to 128.

• Generator G, borrowed from StyleGAN2 [10] and has
the same modulated convolution as mentioned in [25].

• Discriminator D, same as the discriminator used in [25].

Three other pre-trained models are utilized during recon-
struction learning and quantitative evaluation, including:

• Gaze Encoder [1], the last 512-d feature of the encoder
is used for the calculation of Lgaze.

• VGG Network [16] , for the calculation of VGG loss
in [25].

• Deep3DFace [7], a 3DMM model extracting the 3-d pose
and 64-d expression coefficients for the evaluation of
FIDfm, FID∆fm and SND.

I.3. Loss Details

Lip & Non-lip Disentanglement

• Audio-Visual Contrastive Learning We use the same
implementation as in CLIP [13] for the contrastive
learning of audio encoder Ea and a pre-trained visual
encoder Ev [4]. We utilize the audio and frames from
the same video to construct a contrastive batch, where
the corresponding pairs are positive pairs. Our models
were trained on 4 A100 GPUs for 30 epochs with batch
size of 288. The initial learning rate is set to 1e−5 with
a decay rate of 0.93 for every 200,000 steps.

• Reconstruction Learning for Non-Lip Space The



loss formulas are listed as follows [4] [25]:

LGAN = min
G

max
D

ND∑
n=1

EI(i) [logDn(I(i))]

+ Efcat(i)
[log(1− Dn(G(fcat(i))))],

(I)

LL1 =

ND∑
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1
, (II)

LVGG =

NG∑
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∥∥VGGn(I(i))− VGGn(G(fcat(i)))
∥∥
1
,

(III)

LG = λol · Lol + λgaze · Lgaze + λL1 · LL1

+ λGAN · LGAN + λVGG · LVGG,
(IV)

where all λs are set to 1. I(i) and G(fcat(i)) are the GT
image and the generated image of the i-th sample, re-
spectively. LGAN is a multi-scale generative adversar-
ial loss. ND is the number of layers in discriminator
D and the subscript n implies the n-th layer of D. LL1

is the L1 distance between the n-th layer features of
GT and generated image extracted from D. Similar to
LL1, LVGG is defined as the L1 distance between two
features extracted from a pre-trained VGG network.
Lgaze and Lol are described in the paper.

In the disentanglement of lip and non-lip, the learning
rate of two MLPs of Ev is initialized as 1e−5 with a
decay rate as 0.5 for every 80,000 steps. The learning
rates of G and D are initialized as 2e−5 and 3.5e−6,
respectively, with the same decay rate. The batch size
is set to 16 and the size of MB, K, is set to 32 which
stores 512 features in total. After the 40k-th step, we
freeze other modules and train only G and D for 5
epochs on 4 A100 GPUs.

Audio2Visual Prior After the disentanglement of lip &
non-lip, we trained the prior network Pa2nl along with the
pre-trained visual encoder Ev and audio encoder Ea, where
Ev extracts the non-lip feature fvnl and Ea extracts the audio
feature fa.

• Diffusion Prior The input of Pa2nl is a concatenated
feature cat(a1:L, n

t
1:L), where a1:L is an audio fea-

ture sequence and nt
1:L is a non-lip feature sequence

with random noise added through the diffusion pro-
cess. t is the time step and L is the length of the se-
quence. During training, t is uniformly sampled in [1,
T] where T is set to 1000. MSE loss is calculated be-
tween the output of Pa2nl and the GT non-lip feature.
At inference time, nt

1:L is replaced with random Gaus-
sian noise. Note that bidirectional attention is used in
Pa2nl, implying that denoised features are outputted at

the same time. While trained with mask editing, nt
1:L

is randomly replaced with GT values such that Pa2nl is
trained to predict the unmasked region. As a result, the
model is capable of interpolating non-lip sequences ac-
cording to input audio and unmasked non-lip features,
or generating non-lip sequences with input audio only
at inference time. The model was trained on 1 A100
GPU for 50,000 steps with the batch size as 64 and L
as 128. The learning rate is set to 1e−4.

• Auto-Regressive (AR) Prior The prior
Pa2nl(ňi|{ňk<i}, a1:L) is modeled in an auto-
regressive way where k = [1, 2, ..., i − 1] and
i = [1, 2, ..., L]. Different from the diffusion prior, AR
prior encodes the input with causal attention instead
of bi-directional attention such that tokens can only
refer to the previous tokens but not the succeeding
ones. MSE loss is used to measure the prediction error
of GT and the prediction. We use the same training
setting as diffusion prior, i.e. batch size, etc.

I.4. Details about Mask Editing Mechanism

Figure I illustrates how our mask editing works during
both the training and inference. As shown, our mask mech-
anism is very similar to the mask language modeling that is
commonly used in Bert [8] and other pre-trained models,
such as BeiTs [2, 20, 22]. Intuitively, we want to primar-
ily count on the audio to infer the non-lip features, how-
ever, due to the weak correlation between audio and non-
lip facial motions, additional conditions need to feed into
the diffusion model to reduce the ambiguities of the map-
pings. As illustrated, during training, we empirically copy
10% frames of non-lip features from GT and ask the model
to predict the rest 90% masked frames. This is inspired by
the image inpainting works [14]. We leave a thorough study
of the masking mechanism as future work.

I.5. Evaluation Details

Baselines Only methods that have pre-trained models re-
leased were chosen as baselines for fair comparisons. These
methods are introduced as follows,

• Wav2Lip [12] generates the lower-half face given an
identity image, an upper-half driving image, and an au-
dio clip. Other facial regions remain unchanged.

• MakeItTalk [26] learns an identity-specific embedding
and a speech-content embedding to predict facial land-
marks. Face warping and image translation are applied
afterward for face reenactment.

• PC-AVS [25] takes an identity image, a reference pose
video, and an audio clip as inputs to generate a talking
head video. It does not support other facial motions such
as expression and eye blinks.



Figure I. Conceptual illustration of our mask editing technique
during both training and inference. Here, “GT” denotes the non-
lip feature from Ev . During training, we randomly masked 90%
frames of the non-lip features and conditioned on the rest and au-
dio input as well as noise to predict the masked non-lip features
through the reverse diffusion process. During the inference, we
feed the predicted non-lip feature of the last frame from the previ-
ous sequence as the unmasked non-lip features of the first frame in
the next sequence, conditioned on which the subsequent masked
non-lip features will be predicted, therefore smooth transition is
achieved between two consecutive sequences.

• Audio2head [21] learns to predict the head pose auto-
regressively given a reference image and an audio clip and
then generates an audio-driven talking head accordingly.

• EAMM [9] generates a talking head video from an emo-
tion video, a driving audio, an identity image, and a pose
sequence.

Driving Settings Self-reenactment means driving an
identity image with all signals from the same video clip
of GT. Different from self-reenactment, cross-reenactment
uses another video clip of GT as non-lip signals.

Lip & Non-Lip Disentanglement To evaluate the disen-
tanglement between lip and non-lip on VoxCeleb2, we con-
duct two experiments to ensure that they do not interfere

Figure II. Qualitative results on VoxCeleb2 [6] for non-lip signal
only, lip signal only, and both of them, respectively.

Figure III. Qualitative results on VoxCeleb2 with driving signals
from the same video-audio pair as the identity image. Note that
our model uses non-lip signals from video input, instead of the
diffusion prior. Each row shows five uniformly sampled frames
from videos.



Figure IV. Qualitative results on VoxCeleb2 with driving signals
from another video-audio pair. Note that our model uses non-lip
signals from video input, instead of the diffusion prior. Each row
shows five uniformly sampled frames from videos.

with each other. In the first experiment, we set non-lip fea-
tures to all zeros when measuring lip accuracy, whereas in
the second experiment, we set lip features to zeros when
measuring non-lip accuracy. For the non-lip features, we
use fvnl from the motion encoder rather than our diffusion
model. We measure the Normalized Mean Error (NME)
between the 2D landmarks [24] of GT images and gener-

Figure V. Qualitative results of video editing. Each row shows five
continuous frames in each video, where the frame with an orange
box serves as the conditional non-lip features copied from the ex-
ample frames shown on the left. Our model predicts smoothly
transited sounding frames.

ated images for blink and gaze, which we denote as Bd and
Gd, respectively. For expression and pose, we calculate the
L2 distances of the 3DMM coefficients using [7], which we
denote as Ed and Pd, respectively.

Multimodality To quantify the one-to-many diversity, we
also investigated Multimodality from MDM [17] to mea-
sure the average distance of 3DMM parameters between
different runs given the same inputs. However, due to the
lack of one-to-many data, i.e., multiple videos correspond-
ing to the same audio, we only calculate it as 2.31 for future
comparison.

II. Analysis and Results
II.1. Lip & Non-lip Disentanglement

Fig. II shows that non-lip signals can drive pose, expres-
sion, blink and gaze well with the mouth slightly opened.
On the other hand, lip signals can only drive lip motions
with others fixed.

We compare our proposed method with others in talking
head reenactment, resulting in Fig. III. It can be observed
that our method can control non-lip motions including pose,
expression, blink, and gaze while lip motion is in-sync with
the audio. It indicates that our method benefits from a well-
disentangled motion space, which is a good foundation for
our one-to-many diffusion prior.

Besides, we also showcase cross-id compared with other
baselines as shown in Fig. IV. Our proposed method has
more diverse motion than others and can control pose, ex-
pression, blink and gaze well.

II.2. Guidance Factor of Audio Condition

To study the impact of the guidance factor s on the di-
versity and performance of our method, we conduct ex-



s Var → FIDfm ↓ FID∆fm ↓ SND ↓

0.0 1.60 3.98 1.16 5.14
1.0 1.58 3.78 1.14 4.92
2.5 1.57 3.60 1.08 4.68
5.0 1.85 4.16 1.20 5.36

10.0 2.42 6.10 1.67 7.77
Table I. The quantitative results of variance and naturalness for
different guidance factors on VoxCeleb2 under self-reenactment
scenario.

periments and observe similar trends to prior works [17].
Specifically, as s increases, the performance of the gener-
ated results improves, but the diversity decreases. How-
ever, we also find that when choosing a larger value of s,
the model will crash and fail to produce reasonable results.
Therefore, we carefully consider all factors and choose 2.5
as the optimal value for s, as it strikes a balance between
the indicators of diversity and performance.

It is worth noting that when the guidance factor s is set
to 0, there is no audio condition, and all non-lip motions
are sampled from random noise, as defined in Equation 10.
However, we find that the performance of the model with
s = 0 is poor, as reflected in the low value of SND. In con-
trast, our diffusion prior with a guidance factor of 2.5 gener-
ates more natural motions and achieves better performance.
This proves that it is able to generate more reasonable non-
lip motions under audio condition.

II.3. Video Editing Conditioned on Desired Non-lip
Feature

Fig. V shows that our diffusion prior Pa2nl trained with
mask editing technique can enable controlled video editing
with conditional non-lip features. i.e. we can fix the non-lip
feature of one particular frame while letting the diffusion
prior model predict the non-lip features of the rest frames.
In this example, we borrow two non-lip features (extracted
by Ev) from a randomly chosen frame of different identi-
ties. Then, we condition the diffusion prior with these non-
lip features and assign them to a particular frame (the 3rd
frame in this example, marked with an orange box) to let the
model predict the rest frames. As we can see, both resulting
sequences (2nd and 3rd rows) respect the conditional input
and perform smooth transitions surrounding the conditional
frame. This indicates both the robustness and flexibility of
our system.

II.4. Distribution Visualization

In order to visualize the distribution of poses and ex-
pressions generated by each method, we randomly sample
5000 samples for each method and employe t-SNE [18]
for visualization, as described in the main paper. Specif-
ically, Fig.VI,VII,VIII,IX show the results for poses of
auto-regressive, MakeItTalk [26], Audio2Head [21] and our

method with a diffusion prior, respectively. The correspond-
ing results for expressions are shown in Fig.X,XI,XII,XIII.

From Fig.VI and Fig.X, we observe that the distribution
of auto-regressive results appears comprehensive, but most
of the samples are concentrated at the edge of the distribu-
tion (Best viewed with zoom-in to observe the contour line
that represents the degree of data aggregation). Moreover,
the most prominent problem of auto-regressive, rapid and
unreasonable motion changes, cannot be discerned from
the frame-level distribution alone, but is visible in the ac-
companying demo video. For MakeItTalk [26], as shown
in Fig.VII for poses and Fig.XI for expressions, the gener-
ated samples are concentrated in small clusters, indicating
that the method is limited in its ability to generate motions
beyond those of the identity image. This same conclusion
also applies to Audio2Head [21], as shown in Fig.VIII and
Fig.XII, which is only able to generate images facing the
camera.

Figure VI. Distribution visualization of AR’s poses.

Figure VII. Distribution visualization of MakeItTalk’s poses.



Figure VIII. Distribution visualization of Audio2Head’s poses.

Figure IX. Distribution visualization of diffusion’s poses.

Figure X. Distribution visualization of AR’s expressions.

Figure XI. Distribution visualization of MakeItTalk’s expressions.

Figure XII. Distribution visualization of Audio2Head’s expres-
sions.

Figure XIII. Distribution visualization of diffusion’s expressions.



Figure XIV. Rendering cases compared with PC-AVS on Vox-
Celeb2 with driving signals from the same video-audio pair as
the identity image. Note that our model uses non-lip signals from
video input, instead of the diffusion prior.

Figure XV. Qualitative results of generating videos with the differ-
ent audios. Each row shows five continuous frames in each video.

II.5. Limitations of Rendering

Although we train the generator G similarly to that in PC-
AVS [25] and our FID is the best, sometimes there will
be artifacts in non-face area. As shown in Fig. XIV, our
generator may produce stripe artifacts in regions with high-
frequency details, i.e., clothes and background, thus reduc-
ing FID. This is likely caused by our rendered images hav-
ing a larger proportion on the face than PC-AVS’s. Another
possible reason is the imperfect disentanglement within the
pipeline. Nevertheless, our major focus is to predict the
non-lip facial motions based on the audio sequence with the
help of a probabilistic diffusion prior model. We leave the
improvement of rendering to future works.

II.6. More Results

Fig. XV shows the generated videos sampled by different
audios with the same identity image. Fig. XVI shows more
comparing results of our model and other baselines. Please
refer to our supplementary video for more visual results.
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