Supplementary Material for Video State-Changing Object Segmentation

Method | TJ&F | J | F

XMem [1] 66.7 | 59.7 | 73.7
XMem + NCC 699 | 62.7 | 77.1
XMem + Our FT | 75.1 68.4 | 81.8

Table A. Quantitative comparison between Naive Cycle Consis-
tency and our fine-tuning strategy. The performance of directly
applying XMem or fine-tuning via the Naive Cycle Consistency is
significantly worse than our strategy.

Method | J&F | T | F | eed
VISOR-pretrained | 52.8 | 45.8 | 59.7 | 41.6
70.0 | 83.1

Ours 76.5 64.7

Table B. Performance of ResNet-50 (pretrained on VISOR-VOS)
on our VSCOS task.

In this supplementary material, we include (1) a video
demo of our VSCOS results, and (2) this document contain-
ing additional details and explanations about our baseline
approach.

A. Our Baseline Method

Hyperparameter Settings. A weight decay of 0.05 is
applied, and we use a multistep learning rate schedule to
reduce the learning rate to 1e-6 at 1,000 steps. For the EMA
teacher model, we use a warmup mechanism such that the
teacher-student loss is performed after 100 iterations, since
both the teacher and student models perform poorly at first.

Implementation Details. In each iteration, we pick eight
temporally ordered frames including the first and last frames
from a training video clip. First, we use the first frame
as a reference to predict the second frame’s mask. Then
we use the first and second frames as references to predict
the third frame’s mask. The memory bank is limited to at
most 3 frames. So for the frames after the fourth frame,
we will randomly choose three previously-occurring frames
as references. In the inference stage, we use a three-level
memory mechanism, following XMem[ | ].

Naive Cycle Consistency (NCC). To justify our fine-
tuning strategy, we present results for a naive cycle consis-
tency strategy. The model is provided with the first frame
mask and propagates it forward to obtain a predicted last

frame. Then we provide the predicted last frame mask as
a reference and propagate it backward to predict the first
frame mask. We apply a cross-entropy loss and a Dice seg-
mentation loss only between the first frame mask ground
truth and the predicted first frame. Additionally, we also
apply the Mean Teacher losses described in the main paper.
The results are shown in Table A. The performance of naive
cycle consistency (NCC) is higher than XMem without fine-
tuning, but significantly lower than our fine-tuning strategy.
This is probably because in the NCC approach, the loss is
only calculated for the first frame. Therefore, the model
is not explicitly required to understand the state change of
the object and the appearance of the object after the state
change.

Optical Flow Model Details. Conceptually, in some
types of state changes, optical flow provides additional mo-
tion information. To verify this, we applied K-Means clus-
tering on the optical flow of our VSCOS dataset. As shown
in Figure C, pixels corresponding to a falling piece of cu-
cumber have consistent motion patterns, which is helpful
for segmenting this piece. Inspired by this pilot study, we
investigate an intuitive way to integrate optical flow with our
baseline model as shown in Figure D. The optical flow is
provided by the EPIC dataset [2] and we use a lightweight
ResNet18 pretrained on ImageNet as the flow encoder. Fol-
lowing [4], we use 5 stacked optical flows as input and sub-
tract the mean of optical flows to reduce the effect of global
motion. We construct the Fusion Module with a Residual
Block [3], a CBAM Block [5], and a Residual Block. This
reduces the feature dimension to the same as the original
XMem, and we do not change the XMem decoder structure.

Successful Cases of Our XMem-SC. Figure B shows
representative cases where our XMem-SC is better than the
baseline XMem.

Success Cases Where Integrating Optical Flow Brings
Better Performance. Figure A shows representative cases
where integrating optical flow to our XMem-SC is better than
not using flow. Both are finetuned on our VSCOS dataset.
We observe that using flow seems to be more successful in
cases where there is a more pronounced object movement.

VISOR-pretrained results. In Table B we show empiri-
cally that VISOR-pretrained backbone fails for our VSCOS
task, further proving that our task is challenging and not
directly resolvable using the existing VISOR dataset.
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Figure A. Visualization of representative cases where integrating flow is better than not integrating flow. For each example, top: ground

truth; middle: XMem-SC without flow; bottom: XMem-SC with the flow.
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Figure B. Visualization of representative cases where our XMem-SC is better than XMem without finetuning. For each example, top:
ground truth; middle: XMem-SC; bottom: XMem. Best viewed in color with zoom.
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Figure C. Visualization of optical flow clustering. We directly
use K-Means to cluster the optical flow. It can be seen that the
falling pieces have a consistent pattern of motion. This observation
motivates us to integrate motion information to address our VSCOS
task.
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Figure D. Left: our baseline model XMem [!]. Right: our pro-
posed model that integrates optical flow information.



