
A. Overview
In this supplementary material, we present:

• Detailed dataset statistics in experiments (Section B).

• More detailed analysis of CaCao (Section C).

• Human evaluation of CaCao (Section D).

• Additional experimental results (Section E).

• Additional examples (Section F).

B. Dataset Statistics
Visual Genome. Table 1 and 3 show the coarse-grained
predicates and fine-grained predicates with the number of
training instances for each predicate in the Visual Genome
dataset[9]. Table 2 and 4 show the coarse-grained predicates
and fine-grained predicates with the number of training in-
stances for each predicate after cross-modal boosting by our
CaCao. We can observe that CaCao increases dataset scale,
especially the tail predicates, which significantly alleviates
the long-tail distribution problem in SGG.
GQA. For large-scale benchmark SGG, GQA [8] contains
113K images and over 3.8M relation annotations. In order
to ensure the quality of the dataset, we perform a manual
cleaning process to remove annotations that had poor qual-
ity or ambiguous meanings following prior works [5]. We
finally select the top 200 object classes and top 100 predi-
cate classes as the GQA-200 split like VG-50 to explore the
generalization ability of CaCao in large-scale SGG.
VG-1800. VG-1800 [20] is another large-scale benchmark
dataset, which filters out spelling errors and unreasonable
relations, ultimately preserving 70,098 object classes and
1,807 predicate classes for more challenging scenarios. For
each predicate category in VG-1800, there exist over 5 sam-
ples on the test set to provide a reliable evaluation.

C. Cross-Modal Predicate Boosting
C.1. Data Preprocessing

We first collect as many detailed pictures as possible
from the Internet (i.e. CC3M, COCO caption) as the orig-
inal data for training and get nearly 80k images and 2k
predicate categories with corresponding descriptions. Then
we conduct semantic analysis of the corresponding descrip-
tion statement of each image through Stanford CoreNLP
and preserve those informative chunks (i.e. V, P, N, NP,
and VP) to extract fine-grained triplets contained in cap-
tions. and Since the raw data contains much noise, we fur-
ther design heuristic rules (i.e. corpus co-occurrence fre-
quency, layer depth of lexical analysis) to filter out predi-
cates that are not informative or misspelling automatically
instead of handling them manually. We finally eliminate

those coarse-grained predicates and preserve 585 categories
of diverse predicates to obtain informative <subject, predi-
cate, object> relationships, which nearly cover most of the
common situations in the real world, as shown in Table 7.
Since the VG dataset also contains some fine-grained pred-
icates, there are 27 categories of informative predicates we
obtained have overlap with them.

C.2. Adaptive Semantic Cluster Loss

Importance of semantic co-reference. We list more se-
mantic co-reference words and some clustering results as
shown in the table 5, such as he “walks through” / “is pass-
ing through” / “passed by” a street may correspond to the
same predicate “walking on. To address the semantic co-
reference challenge, we proceed to train CaCao using the
ASCL based on predicate semantic clusters. Since there are
strong dependencies between triples in complex scenarios,
for each predicate class, we represent and average the em-
beddings of all triples corresponding to it. To achieve this,
we use the feature map of the last BERT layer as the rep-
resentation of each entire triplet. We initialize the target
predicate according to different similarity thresholds, and
then confirm the number of initial centroids.

Importance of semantic ambiguity. Although semantic
clustering is static to contexts, CaCao dynamically adjusts
the predicted results based on context-aware labels, which
are sensitive to various contexts. Then semantic clustering
promotes diverse expressions for the adjusted synonyms,
which are also context-sensitive. Besides, we find only a
few semantic ambiguities caused by contexts (6% for ‘wear-
ing’ to ‘has’) in the current dataset and analyze that the in-
fluence of contexts on synonyms in SGG is small during
training. For a few failure cases caused by complex seman-
tic ambiguities, we provide several candidates to correct the
mapping and obtain more accurate prediction results.

C.3. Fine-Grained Predicate Boosting

In Figure 1a and 1b, we show the predicate distributions
of the standard SGG dataset and open-world boosted data
from CaCao. To enhance predicates into the target scene
graphs, we need to establish the mapping from diversity
predicates to target predicates, as shown in Table 10.

Moreover, we notice that there exists ambiguity and
overlap between coarse-grained predicates and fine-grained
predicates in fact. We further create the mapping between
fine-grained predicates and coarse-grained predicates based
on the semantic association between predicates [2]. We then
figure out those low-confidence fine-grained predicates and
map them into general predicates as final predicted results
to achieve better trade-offs on long-tail recognition.



Coarse-grained Predicates above across against along and at behind between for from
Number of Predicates 47341 1996 3092 3624 3477 9903 41356 3411 9145 2945

Coarse-grained Predicates has in in front of near of on over to under with
Number of Predicates 277936 251756 13715 96589 146339 712409 9317 2517 22596 66425

Table 1. Statistics of coarse-grained predicates for the VG-50.

Coarse-grained Predicates above across against along and at behind between for from
Number of Predicates 47829 60320 88810 3722 10254 38305 43345 94138 10643 17149

Coarse-grained Predicates has in in front of near of on over to under with
Number of Predicates 300695 296474 24950 141494 197294 787048 12820 8672 43535 93078

Table 2. Statistics of coarse-grained predicates for the boosted VG-50 from CaCao.

Fine-grained Predicates attached to belonging to carrying covered in covering eating flying in growing on hanging from holding
Number of Predicates 10190 3288 5213 2312 3806 4688 1973 1853 9894 42722

Fine-grained Predicates laying on looking at lying on made of mounted on on back of painted on parked on part of playing
Number of Predicates 3739 3083 1869 2380 2253 1914 3095 2721 2065 3810

Fine-grained Predicates riding says sitting on standing on using walking in walking on watching wearing wears
Number of Predicates 8856 2241 18643 14185 1925 1740 4613 3490 136099 15457

Table 3. Statistics of fine-grained predicates for the VG-50.

Fine-grained Predicates attached to belonging to carrying covered in covering eating flying in growing on hanging from holding
Number of Predicates 80066 20858 79148 54015 17879 100241 6752 20290 90025 68378

Fine-grained Predicates laying on looking at lying on made of mounted on on back of painted on parked on part of playing
Number of Predicates 31783 150817 21944 27189 62583 20628 36882 68218 14727 20789

Fine-grained Predicates riding says sitting on standing on using walking in walking on watching wearing wears
Number of Predicates 62625 22273 68474 70311 63777 32956 38853 235425 258332 60328

Table 4. Statistics of fine-grained predicates for the VG-50.

Predicted Predicates Semantic Co-reference Predicates
‘wearing’ [‘wearing’, ‘worn on’, ‘carrying’]
‘holding’ [‘holding’, ‘carrying’, ‘pulling’]
‘next to’ [‘next to’, ‘sitting next to’, ‘standing next to’]

‘standing in’ [‘standing in’, ‘standing on’, ‘standing by’]
‘below’ [‘below’, ‘beneath’, ‘standing behind’]

‘flying in’ [‘flying’, ‘flying in’, ‘floating in’]
‘sitting on’ [‘sitting at’, ‘sitting in’, ‘is seated on’]
‘hang on’ [‘hang on’, ‘hanging on’, ‘hanging from’]

‘covered in’ [‘covered in’, ‘covered with’, ‘covered by’]
‘surrounded by’ [‘surrounded by’, ‘covered by’, ‘pulled by’]
‘walks through’ [‘walks through’,‘ is passing through’, ‘passed by’]

Table 5. The examples of top clustering results for semantic co-
reference predicates

D. Human Evaluation

A key element of effective SGG boosting is to obtain
high-quality data. Thus, we conduct a human evaluation
for automatically obtained labels from CaCao to verify the
quality. We randomly select 100 images containing 545
base relationships and 3543 novel relationships to validate
the accuracy and informativeness of the predicates associ-
ated with these augmented relationships, ensuring their util-
ity in facilitating open-world predicate scene graph genera-
tion. We show the result in Table 8. We observe the radio of
reasonable fine-grained predicates in CaCao is 73.4% and
the proportion of coarse-grained predicates is greatly re-
duced by CaCao’s enhanced predicates. Consequently, the

Models
PredCls SGCls SGDet

zsR@50/100 ↑ zsR@50/100 ↑ zsR@50/100 ↑

MOTIFS [19] 10.9 / 14.5 2.2 / 3.0 0.1 / 0.2

+Resample [1] 11.1 / 14.3 2.3 / 3.1 0.1 / 0.3

+TDE-GATE [13] 5.9 / 8.1 3.0 / 3.7 2.2 / 2.8

+Label Refine [6] 14.4 / - 3.0 / - 3.1 / -

+QuatRE [17] 11.9 / 15.2 2.8 / 3.6 0.2 / 0.4

+CaCao 12.0 / 13.1 5.1 / 5.8 3.6 / 3.9

VCTree [14] 10.8 / 14.3 1.9 / 2.6 0.2 / 0.7

+TDE-GATE [13] 7.7 / 11.0 1.9 / 2.6 1.9 / 2.5

+Label Refine [6] 13.5 / - 6.2 / - 3.3 / -

+QuatRE [17] 11.3 / 14.4 3.5 / 4.4 0.5 / 0.9

+CaCao 13.6 / 14.9 6.5 / 7.2 3.3 / 5.2

Transformer [13] 11.3 / 14.7 2.5 / 3.3 0.9 / 1.1

+CaCao 14.5 / 15.9 4.8 / 5.7 4.4 / 5.7

Table 6. Comparisons of the VG-50 SGG results on zero-shot
combinational generalization performance (zsR@K) among var-
ious approaches.

results indicate that the predicates enhanced by CaCao can
effectively provide fine-grained information.



Image Description Extracted Relationships

A clock that blends in with the wall hangs in a bathroom.

(’clock’, ’blends in with’, ’wall’)
(’clock’, ’in with’, ’wall’)

(’clock’, ’with’, ’wall’)
(’clock’, ’hangs in’, ’bathroom’)

(’clock’, ’in’, ’bathroom’)

A couple at the beach walking with their surfboards.
(’couple’, ’at’, ’beach’)

(’couple’, ’walking with’, ’their-surf’)
(’couple’, ’with’, ’their-surf’)

A yellow and black bird standing on and hanging with a bike rack.

(’black-bird’, ’on’, ’bike-rack’)
(’yellow-bird’, ’on’, ’bike-rack’)

(’black-bird’, ’standing on’, ’bike-rack’)
(’black-bird’, ’hanging with’, ’bike-rack’)

Table 7. The examples of <subject, predicate, object> extraction from raw data for prompt tuning.
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Figure 1. Qualitative predicate distributions of the standard SGG dataset and the open-world enhanced data from CaCao.

E. Additional Experiment Analyses
Compositional Generalization. Thanks to the remarkable
performance of our CaCao in the open-world scenario, it



Total Predicate True Predicate Fine-Grained Predicate (%) ↑ Coarse-Grained Predicate (%) ↓

Original 545 545 119 (21.8%) 426 (78.2%)

CaCao 3543 2427 1781 (73.4%) 646 (26.6%)

Overall 4088 2972 1900 (63.9%) 1072 (36.1%)

Table 8. Human evaluation for the accuracy and variety of enhanced predicates from CaCao.

Model Type Methods Scene Graph Detection
R@50/100 ↑ mR@50/100 ↑ F@50/100 ↑

Specific
BGNN [10] 31.0 / 35.8 10.7 / 12.6 15.9 / 18.6
SVRP [7] 31.8 / 35.8 10.5 / 12.8 15.8 / 18.9
DT2-ACBS [4] 15.0 / 16.3 22.0 / 24.0 17.8 / 19.4

One-stage SSRCNN [15] 23.7 / 27.3 18.6 / 22.5 20.8 / 24.7
+CaCao (ours) 25.4 / 30.0 18.7 / 23.1 21.5 / 26.1
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Motif [19] 31.0 / 35.1 6.7 / 7.7 11.0 / 12.6
Resample +Resample [1] 30.5 / 35.4 8.2 / 9.7 12.9 / 15.2

Reweight

+Reweight [16] 24.4 / 29.3 10.5 / 13.2 14.7 / 18.2
+CogTree [18] 20.0 / 22.1 10.4 / 11.8 13.7 / 15.4
+FGPL [12] 21.3 / 24.3 15.4 / 18.2 17.9 / 20.8
+GCL [5] 18.4 / 22.0 16.8 / 19.3 17.6 / 20.6

Causal Rule +TDE [13] 16.9 / 20.3 8.2 / 9.8 11.0 / 13.2

Data Enhancement

+Only Caption Relations 20.3 / 25.0 8.2 / 10.0 11.7 / 14.3
+DLFE [3] 25.4 / 29.4 11.7 / 13.8 16.0 / 18.8
+IETrans [20] 23.5 / 27.2 15.5 / 18.0 18.7 / 21.7
+CaCao (ours) 24.4 / 29.1 17.1 / 20.0 20.5 / 23.7

Table 9. Performance (%) of our method CaCao and other baselines with different model types for both head and tail categories on VG-50
dataset.

demonstrates the potential to improve the model composi-
tional generalization ability in traditional zero-shot scene
graph generation tasks [11, 6, 17]. Table 6 presents the
zero-shot Recall@K metrics in each task (i.e., PredCls, SG-
Cls, and SGDet), providing a comprehensive evaluation of
the compositional generalization performance. We compare
our proposed CaCao with other state-of-the-art approaches.
Our proposed method achieves improvements in most of the
settings with different SGG backbones, except for MOTIFS
in PredCls. MOTIFS being a textual-only model fails to ef-
fectively utilize the enhanced data to learn implicit features
for discerning the combination of relations and hence per-
forms poorly when given the ground truth contexts. Con-
versely, the multi-modal VCTree and Transformer models
effectively utilize extra triplet-level data due to their ability
to align more visual information, facilitating generalization
to unseen triplets during testing.

Further Evaluation on Head and Tail Predicates. Since
CaCao brings much extensive visual relation knowledge on
various visual predicates from powerful VL-models, the Ca-
Cao may achieve a better trade-off on long-tail distribution

SGG. Our results on the whole category set partly give evi-
dence that CaCao can achieve a better balance in the long-
tail distribution. Additionally, we inspect the performance
of CaCao across non-rare head predicates to further verify
its better balance between head and tail predicate categories
in Table 9 R@K. Following prior works [20], we further
use the harmonic average of R@K and mR@K to jointly
evaluate R@K and mR@K, which is denoted as F@K.
From Table 9, we observe that CaCao outperforms other
SOTA model-agnostic methods and specific string baseline
according to the joint metric F@K (20.5 / 23.7 of F@50/100
on SGDet), showing the effectiveness of CaCao on both
head and tail categories.

F. Additional Examples
Figure 2 shows some more examples for qualitative vi-

sualizations of enhanced SGG based on our CaCao.



Open-world predicate relationships → Target predicate relationships
[‘sidewalk’, ‘in between’, ‘car’] → [‘sidewalk’, ‘between’, ‘car’]

[‘sidewalk’, ‘walking across’, ‘street’] → [‘sidewalk’, ‘across’, ‘street’]
[‘tree’, ‘hanging in’, ‘building’] → [‘tree’, ‘hanging from’, ‘building’]

[‘tree’, ‘uses’, ‘phone’] → [‘tree’, ‘using’, ‘phone’]
[‘car’, ‘are parked on’, ‘street’] → [‘car’, ‘parked on’, ‘street’]

[‘street’, ‘parked at’, ‘sidewalk’] → [‘street’, ‘parked on’, ‘sidewalk’]
[‘street’, ‘among’, ‘car’] → [‘street’, ‘between’, ‘car’]

[‘phone’, ‘hanging on’, ‘tree’] → [‘phone’, ‘hanging from’, ‘tree’]
[‘motorcycle’, ‘displaying’, ‘person’] → [‘motorcycle’, ‘carrying’, ‘person’]

[‘building’, ‘connected to’, ‘pole’] → [‘building’, ‘attached to’, ‘pole’]
[‘street’, ‘parked at’, ‘sidewalk’] → [‘street’, ‘parked on’, ‘sidewalk’]

[‘shirt’, ‘leans against’, ‘woman’] → [‘shirt’, ‘against’, ‘woman’]
[‘glass’, ‘hanging on’, ‘head’] → [‘glass’, ‘hanging from’, ‘head’]

[‘chair’, ‘to make’, ‘leg’] → [‘chair’, ‘made of ’, ‘leg’]
[‘man’, ‘watch’, ‘woman’] → [‘man’, ‘watching’, ‘woman’]

[‘man’, ‘leaning up against’, ‘table’] → [‘man’, ‘against’, ‘table’]
[‘screen’, ‘laying on’, ‘paper’] → [‘screen’, ‘lying on’, ‘paper’]

[‘paper’, ‘looking up at’, ‘screen’] → [‘paper’, ‘looking at’, ‘screen’]
[‘tree’, ‘hanging over’, ‘trunk’] → [‘tree’, ‘hanging from’, ‘trunk’]

[‘car’, ‘hooked up to’, ‘pole’] → [‘car’, ‘attached to’, ‘pole’]
[‘tree’, ‘across from’, ‘fence’] → [‘tree’, ‘between’, ‘fence’]

[‘sidewalk’, ‘hanging in’, ‘trunk’] → [‘sidewalk’, ‘hanging from’, ‘trunk’]
[‘sidewalk’, ‘traveling on’, ‘leaf’] → [‘sidewalk’, ‘growing on’, ‘leaf’]

[‘boy’, ‘looking down at’, ‘car’] → [‘boy’, ‘looking at’, ‘car’]
[‘woman’, ‘is using’, ‘pant’] → [‘woman’, ‘using’, ‘pant’]

[‘woman’, ‘towing’, ‘shirt’] → [‘woman’, ‘carrying’, ‘shirt’]
[‘head’, ‘connected to’, ‘nose’] → [‘head’, ‘attached to’, ‘nose’]
[‘hair’, ‘is looking at’, ‘child’] → [‘hair’, ‘looking at’, ‘child’]

[‘nose’, ‘tied to’, ‘head’] → [‘nose’, ‘attached to’, ‘head’]
[‘finger’, ‘is parked on’, ‘hand’] → [‘finger’, ‘painted on’, ‘hand’]

[‘man’, ‘eaten’, ‘pizza’] → [‘man’, ‘eating’, ‘pizza’]
[‘windshield’, ‘towing’, ‘umbrella’] → [‘windshield’, ‘carrying’, ‘umbrella’]

[‘airplane’, ‘hanging on’, ‘wing’] → [‘airplane’, ‘hanging from’, ‘wing’]
[‘airplane’, ‘hanging on’, ‘wing’] → [‘airplane’, ‘hanging from’, ‘wing’]

[‘airplane’, ‘flying high in’, ‘sky’] → [‘airplane’, ‘flying in’, ‘sky’]
[‘sign’, ‘strapped’, ‘arrow’] → [‘sign’, ‘on’, ‘arrow’]

[‘face’, ‘connected to’, ‘neck’] → [‘face’, ‘above’, ‘neck’]
[‘tree’, ‘across from’, ‘building’] → [‘tree’, ‘across’, ‘building’]
[‘roof’, ‘across from’, ‘building’] → [‘roof’, ‘along’, ‘building’]
[‘jacket’, ‘is cluttered with’, ‘man’] → [‘jacket’, ‘with’, ‘man’]

[‘sign’, ‘are showing on’, ‘building’] → [‘sign’, ‘says’, ‘building’]
[‘short’, ‘in between’, ‘man’] → [‘short’, ‘with’, ‘man’]

[‘jean’, ‘stacked on’, ‘man’] → [‘jean’, ‘painted on’, ‘man’]
[‘person’, ‘is walking on’, ‘sidewalk’] → [‘person’, ‘walking on’, ‘sidewalk’]

[‘chair’, ‘are looking at’, ‘boy’] → [‘chair’, ‘in front of ’, ‘boy’]
Table 10. Examples of open-world predicates to target predicates mapping.



Figure 2. Additional Qualitative Results for Transformer equipped with our CaCao framework for predicate enhancement with the ground
truth relationships. The predicted triplets are from the SGDet setting.
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