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1. More implementation details
Network architecture. Our network architecture is shown
in Fig. 1.

The motion model refers to the multi-layer perceptron ar-
chitecture [1, 2] to predict the deformation field of a given
object from the space at arbitrary phase Ti to the ED spa-
tial space. Specifically, for a sampling point x ∈ R3, the
corresponding deformation v ∈ R3 is predicted under the
condition of motion code cm

i ∈ RKm
(Km = 128) at Ti

phase and phase indicator τi ∈ R. The network has sev-
eral jump connections, connecting the front features with
the back. Except for the last layer, each layer has non-linear
activation of LeakyReLU.

The shape model uses the auto-decoder network pro-
posed in DeepSDF [3]. Precisely, for a point x ∈ R3 in the
space, the corresponding SDF value sdf ∈ R can be pre-
dicted through an MLP network based on the shape code
cs ∈ RKs

(Ks = 256). In order to accelerate the conver-
gence of the whole architecture, our shape model is pre-
trained.
Sampling strategy. For the training stage, we use the shape
sequence obtained by the following method (in Sec. 3) for
training and sample 50,000 points at each phase. The sam-
pling points are mainly near the mesh surface. For the in-
ference stage, the input is the point cloud sequence obtained
from the raw CMR sequence. The point cloud is relatively
dense at the intra-layer level, and each phase only contains
about 5,000 contour points.

2. Acquisition of P
Before entering the motion model, we must align the in-

put point cloud into a unified space. The registration princi-
ple we adopt here can be seen in Fig. 2:

1. Align the normal vector of the short-axis slice of MR
at the ED phase (red arrow) with that of the statistical
mean shape s̄ (defined in Sec. 3.2.1 in main paper) to
get R1.

2. Align the vertical line of the intersection between the
left ventricle and the right ventricle of the middle slice

of MR (green arrow) at the ED phase with that of the s̄
to get R2.

3. R = R2R1 is computed as the result of the matrix
multiplication. It forms the rotation part of P .

Both R1 and R2 are computed using the following process-
ing. Given two unit vectors, u1 and u2, the rotation matrix
Ri that aligns u1 with u2 can be calculated as follows:

Ri = I3 + V× + V×V×
1− u1 · u2

∥u1 × u2∥2
, (1)

where, I3 is the 3×3 identity matrix and V is the skew-
symmetric cross-product matrix of u1 × u2.

The obtained transformation P is executed together for
the same sequence, normalized to the unit space, and then
the points in this space are queried.

3. Our proposed dataset
We train and evaluate our proposed CMR dataset, which

was acquired at Jiangsu Province Hospital, and composed
of 55 healthy subjects. Each subject includes multiple slices
(8-10 slices) with a resolution of 1.25 × 1.25 × 10mm.
Each slice covers the video sequence of the cardiac cycle
(25 phases). The clinical experts manually delineated the
left myocardium of all the phases and slices.
The acquisition of ground truth shape. First, the raw im-
ages are manually segmented to obtain the left myocardial
contours C = {C1,C2, · · · ,CM}, where M is the num-
ber of slices. We use the constructed statistical shape model
(SSM) to fit C. The formula for obtaining the shape from
the given parameter θ ∈ RK(K = 100) is as follows:

B(θ,p) = ARBs(θ) +T, (2)

where the function Bs(θ) = Ms̄+Xθ produces the shapes
according to the Principal Component Analysis (PCA).
Noted that the hearts of different people are in different
positions in space, so it is necessary to perform a global
position transformation. Therefore, we add the position pa-
rameter p and limit the changes to scaling, rotation, and
translation.



Figure 1. Network architecture.

Figure 2. Align the input point cloud into unified space before en-
tering the motion model.

A is a scaling matrix with the main diagonal elements
a. ω = [ω1, ω2, ω3]

T is the axis-angle representation of the
rotation. Using the Rodrigues formula, the axis-angle can
be converted to a rotation matrix:

R = exp[ω] = I+ sin ∥ω∥ [ω̂] + (1− cos ∥ω∥)[ω̂]2, (3)

where (̂·) is an operator that unites a vector, [·] is an anti-
symmetric operator, and I is the identity matrix. t =
[t1, t2, t3]

T denotes the translation and T represents the
matrix form used for calculation. Therefore, we define
p = [a, a, a, ω1, ω2, ω3, t1, t2, t3]

T ∈ R7 as the position
parameter.

We fit the template s̄ to the contour by formulating an
optimization problem. In order to obtain the initial position
better, we consider the relative position constraint between
the left ventricle and the right ventricle. The 3D model ob-
tained from the parameter is then sectioned according to
the positions of the slices to find the correspondence be-
tween the points on the same slice. Therefore, our goal
is to find the shape and position parameters by minimizing
the square error between the contour of the reconstruction
model C̃ =

∏
B(θ,p) and C, where

∏
is the section oper-

ation:

E =

TN∑
i=1

Mepi∑
j=1

Nepi∑
k=1

∥C̃epi
i,j,k −Cepi

i,j,k∥
2
2

+

TN∑
i=1

Mendo∑
j=1

Nendo∑
k=1

∥C̃endo
i,j,k −Cendo

i,j,k ∥22

+λ ∥NΘ∥22 ,

(4)

where Ci,j,k ∈ R3 and C̃i,j,k ∈ R3 are the correspond-
ing k-th vertice of C and C̃ on j-th slice at i-th phase re-
spectively, which can be fastly searched by KD tree. epi
and endo represent epicardium and endocardium respec-
tively, L is the Laplace matrix and Θ = [θ1, θ2, · · · , θTN

] ∈
RTN×(K+7) is a matrix of all parameters of a sequence, and
TN is the length of the sequence. The last item is used for
temporal smoothing. The whole process requires multiple
iterations, and one sequence takes 30 minutes, which is far
longer than the time required for practical application.
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