
Appendix

A. Implementation Details

Dataset Details. We conduct our experiments on two cat-

egories of data: monocular images of human portraits and

cat faces. We follow the method in EG3D [2] to extract the

camera parameters of these images with off-the-shelf pose

detectors [4, 5]. For human portraits, we use FFHQ [1]

which contains about 70,000 images to train our model.

To evaluate our model’s performance of input-view recon-

struction, we randomly sample 1,500 images from CelebA-

HQ [6] test for quantitative evaluation. Additionally, we use

a multi-view dataset MEAD [14] to evaluate our model’s

performance across novel views. Specifically, we use five

views (left60◦, left30◦, front, right30◦, right60◦) images of

43 persons per frame. We randomly sample 5 frames for

each person. For cat faces, we use AFHQv2 Cats [3] fol-

lowing EG3D. We split about 5,000 images into train, eval-

uation, and test sets by 8:1:1 ratio.

Architecture of Geometry-aware Encoder. Our encoder

uses Swin-transformer as the backbone, and we further de-

sign attention modules at different scale feature layers for

different level latent codes. The encoder architecture is

shown in Fig. 1. We split the intermediate output of the

Swin-transformer into four levels “query, coarse, mid, fine”

similar to the pyramid architecture of CNN models. We

use “query” to get w0 and query Qcoarse, Qmid, Qfine, and

leverage “coarse”, “mid”, “fine” to obtain keys and values

(K,V )coarse, (K,V )mid, (K,V )fine. Then the different

level queries with corresponding keys and values are sent

into cross-attention modules to yield different wi. Finally,

the final latent code w+ is obtained by:

w+ = wavg + w0 + (0, w1∼3, w3∼6, w7∼13). (1)

Occlusion-aware Mix Tri-plane. As mentioned in Sec.4.3,

we can get the visible points set V(x,y,z). Then we perform

orthogonal projection that projects these points to the three

axis-aligned feature planes (Fxy , Fxz , Fyz) of tri-plane to

get three masks separately, denotes as tri-Mask. The grid

point in tri-Mask is equal to 1 if the corresponding 3D

point is in V(x,y,z), otherwise it is equal to 0. Finally, the

mix tri-plane can be obtained by:

tri-planemix = tri-planeF∗ � tri-Mask

+ tri-planew+ � (tri-I − tri-Mask),
(2)

where tri-I is the concatenated result of three all-one ma-

trices, which has the same dimension as tri-Mask.

Training Strategy We use a two-stage training strategy.

In the first stage, we only train our encoder model based

on the loss in Sec. 4.1. After the loss is converged, we

freeze the encoder parameters, and train the Adaptive Fea-

ture Alignment (AFA) module with occlusion-aware mix

tri-plane. When training the geometry-aware encoder, we

follow e4e [13] to train different level modules and output

corresponding wi progressively. Only the latent code before

and at the current stage will be added to w+. Different from

e4e, we only use 3 progressives stage (i.e. coarse, mid, fine),

instead of 14 wi stages (i.e. 0, 1, 2, ..., 13) in e4e. We train

the canonical latent discriminator DWc
at the beginning of

each encoder training iteration, and fix its parameter when

training the encoder.

Experiment settings. For human data, we train the encoder

with a batch size of 3 on one 3090 GPU for about 1,000,000

iterations. We use a discriminator learning rate of 0.00002

with Adam optimizer and an encoder learning rate of 0.0001

with a ranger optimizer, which is a combination of Rectified

Adam [8] with the Lookahead technique [15]. Then we

train our AFA module with a learning rate of 0.000025 with

Adam optimizer, which uses 800,000 iterations of batch size

2. We only train the encoder 200,000 iterations and 150,000

iterations for cat data. We test our method and other meth-

ods with 3090 GPUs, and test inference time with the same

settings. We use images from CelebA-HQ or AFHQv2 Cats

to perform inversion.

IDE-3D. IDE-3D [12] uses semantic segmentation to re-

train EG3D. It learns an encoder to get a latent code and

further optimize the generator parameters for inversion and

editing images. We compare our encoder with its encoder

both qualitatively and quantitatively.

PTI. PTI [10] is the most used optimization method in 2D

GAN inversion. We follow its official settings, and only

replace the 2D GAN by the EG3D generator. It learns the

pivot latent code for 450 iterations, and finetunes generator

parameters for 350 iterations.

Pose Opt. Pose Opt. [7] jointly optimizes camera pose, la-

tent codes, and generator parameters for 3D GAN inversion.

We follow its official settings and learn the pivot latent code

and camera pose for 400 iterations at the first stage, and

finetune generator parameters for 400 iterations at the sec-

ond stage. We also use its pre-trained encoder for pivot la-

tent code and camera pose initialization.

Editing. We perform InterfaceGAN [11] to get a semantic

latent direction for editing. First, we sample 500000 front

faces whose corresponding latent codes are conditioned by

canonical poses, and sort them by attribution classifiers. We

choose the top 10000 and bottom 10000 samples according

to their score of classification, then we use SVM to get the

direction. Finally, We use the method in Sec. 4.4 to get 3D-

consistent editing results.
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Figure 1: Encoder architecture comparison. We refer to pSp [9], e4e [13]’s model structure, refine and build up EG3D

inverters respectively (see in (a),(b)). Our designed Swin-transformer based encoder is shown in (c).

Method

Novel view quality

yaw= ±60◦ yaw = 0◦

PSNR ↑ SSIM ↑ MSE ↓ LPIPS ↓ FID ↓ ID ↑ Geo. Err. ↓ PSNR ↑ SSIM ↑ MSE ↓ LPIPS ↓ FID ↓ ID ↑ Geo. Err. ↓
w/o DWc

, w/o LBG 19.82 0.5730 0.0565 0.3069 62.1 0.6206 0.1422 19.83 0.5382 0.0540 0.2966 68.9 0.6842 0.1775

w/o DWc , w/ LBG 19.41 0.5576 0.0585 0.2883 59.0 0.6176 0.1016 20.76 0.5829 0.0417 0.2572 60.6 0.6864 0.1082

w/ DWc , w/o LBG 20.20 0.5999 0.0495 0.2599 55.5 0.6459 0.1414 20.67 0.5757 0.0428 0.2527 55.1 0.6844 0.1491

w/ DWc , w/ LBG 20.66 0.6211 0.0473 0.2203 52.2 0.6552 0.0943 21.12 0.5944 0.0383 0.2372 54.1 0.6848 0.0955
w/o occlusion-aware 20.69 0.6176 0.0489 0.2327 52.5 0.6832 0.0983 20.26 0.6374 0.03202 0.2230 50.3 0.744 0.0954

Ours 20.87 0.6299 0.0424 0.2192 50.9 0.700 0.0950 22.13 0.6502 0.0329 0.2204 51.7 0.743 0.0944

Table 1: Ablation studies on Geometry-aware Encoder and Occlusion-aware Mix Tri-plane. We evaluate the proposed

canonical space Wc, the background regularization, and the occlusion-aware mix tri-plane on MEAD dataset. The best

performance on W space inversion and F space inversion are in bold.

Method PSNR ↑ SSIM ↑ MSE ↓ LPIPS ↓ FID ↓ ID ↑ Geo. Err. ↓
w/ conv 19.67 0.5962 0.0455 0.1766 25.1 0.8033 0.1094

w/ AFA 21.84 0.7079 0.301 0.1242 18.1 0.8797 0.0984

Table 2: Ablation study on AFA module. We replace the

proposed adaptive alignment module in AFA with CNN net-

work and evaluate on CelebA-HQ dataset.

B. More Experimental Results

Ablation of Geometry-aware Encoder Designs. We test

different ablation settings of our encoder on MEAD, for

novel view geometry and texture evaluation. As shown in

Table 1, the design of the canonical discriminator (DWc
)

and background depth regularization (LBG) is necessary for

a good geometry inversion.

Ablation of Adaptive Feature Alignment. We evalu-

ate Adaptive Feature Alignment (AFA) module ablation on

source view reconstruction performance on CelebA-HQ, as

shown in Table 2. Modified feature maps generated by only

convolution modules are hard to align to the facial region in

canonical feature space Fc, whose reconstruction quality is

inferior to our method.

Ablation of Occlusion-aware Mix Tri-plane. We evaluate

occlusion-aware mix tri-plane design on MEAD for novel

view evaluation. As the distortion exists in the occlusion

part, our full models will perform better on novel view im-



age synthesis, as shown in Table 1.

Comparison with Encoder-based Methods. We show

more qualitative comparisons with encoder-based methods

in Fig. 3. Our method significantly surpasses others.

Comparison with Optimization-based Methods. We

present more qualitative results of comparison with

optimization-based methods in Fig. 4. It is worth noting

that when the input image is a side face, optimization-based

methods tend to overfit the input image and are hard to syn-

thesize novel-view images. In some cases, Pose Opt. fails

to converge to an accurate pose using optimization and gen-

erates degradation results.

More Human Faces Results in extreme condition. As

shown in Fig 2, we present our method compared with

PTI [10] on different extreme conditions: pose, appearance

(heavy make-up), expression, and show the failure cases.

More Novel View Results with Our Method. More novel

view results with our method can be found in Fig. 5, 6, 7.

Our method can achieve high-quality 3D-consistent multi-

view image synthesis.

More Results of Editing with Our Method. We present

more 3D-consistent results of human faces and cat faces in

Fig. 8, 9, 10. Our method shows powerful editing ability

which can be used in real-world applications.

C. More Disscussion
Without off-the-shelf pose estimator. IDE-3D uses the

same off-the-shelf pose estimator as ours, and we use the es-

timated poses when testing IDE-3D. While Pose Opt. uses

an encoder to get a pose as an initialization of their opti-

mization process, we can easily equip our approach with

camera pose estimation. By employing a simple MLP to

map the inverted latent code to the pose, we achieve favor-

able results. Table 3 lists the performance of our camera

pose estimator on human faces and car datasets.

Human faces cars

Pose C-MSE ↓ MSE ↓ LPIPS ↓ C-MSE ↓ MSE ↓ LPIPS ↓
GT

0.0031
0.0301 0.1257

0.0218
0.0367 0.1745

ours-pred 0.0354 0.1286 0.0452 0.1802

Table 3: Camera pose estimation results. C-MSE de-
notes the MSE between our predicted camera pose and
ground truth. MSE and LPIPS are calculated between
input images and corresponding inversion results.

Without Transformer-based Encoder. As shown in Ta-

ble 4, we replace the backbone with the encoder of e4e

(e4e+ours). It shows better performance than e4e-3D in Ta-

ble.1 in the main paper, which indicates the effectiveness of

DWc
, LBG. Meanwhile, the Swin-transformer brings bet-

ter results by comparing the e4e+ours and Ours-w+ in the

main paper.

yaw=±60◦ yaw=0◦
LPIPS ↓ FID ↓ ID ↑ Geo. Err ↓ LPIPS ↓ FID ↓ ID ↑ Geo. Err ↓

e4e+ours 0.2453 53.6 0.629 0.1178 0.2416 52.2 0.671 0.1211

Table 4: Results of e4e backbone with our DWc , LBG.
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Figure 2: More extreme results (Row. 1-3) and failure
cases (Row. 4).
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Figure 3: Comparison with encoder-based methods.
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Figure 4: Comparison with optimization-based methods.
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Figure 5: Multi-view human faces inversion results of our method (part 1/2).
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Figure 6: Multi-view human faces inversion results of our method (part 2/2).
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Figure 7: Multi-view cat faces inversion results of our method.
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Figure 8: Editing results on human faces (part 1/2).
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Figure 9: Editing results on human faces (part 2/2).
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Figure 10: Editing results on cat faces.


