
In this supplementary material, we first list the details of
our implementation in section A. Second we conduct ad-
ditional experiments including an analysis on our hyper-
parameter, runtime analysis, and an evaluation on a more
challenging dataset, in section B. Third, we provide the de-
tails of the network architecture in section C. Finally, we
provide qualitative visualization of our PointMBF in sec-
tion D.

A. Implementation Details of PointMBF
Table 5 shows the implementation details of our

PointMBF. The first nine lines are the same as those in LLT
[67] and UR&R [14], while the last three lines colored in
grey are our own settings.

Table 5. Implementation details of our PointMBF.
Batch size 8
Image size 128*128
Feature dimension 32
Number of correspondence k 200
Training epochs 12
Optimizer Adam
Learning rate 1e-4
Momentum 0.9
Weight decay 1e-6
Kv2g,Kg2v for training Kv2g = 16,Kg2v = 1
Kv2g,Kg2v for test Kv2g = 32,Kg2v = 1
Use pre-trained weight for ResNet18 False

B. Additional Experiments
In this section, we conduct two experiments including

analysis on hyperparameter Kv2g and runtime analysis. All
the models in the experiments is trained on 3DMatch [73]
and tested on ScanNet [11].

B.1. Effect of hyperparameter Kv2g

Hyperparameter Kv2g denotes the number of visual fea-
tures embedded into each geometric feature. Here, we test
its influence on registration. Limited by memory, we set it
from 1 to 32.

The result is shown in Table 6. It can be seen that the
performance of our method improves as Kv2g increases, but
the trend of improvement gradually slows down. This is be-
cause that, as Kv2g increases, Kv2g gradually reaches the
number of points or pixels in a corresponding region. We
also find that even if we set Kv2g to 1, our method still out-
performs the state-of-the-art method, LLT [67] in almost all
metrics, which illustrates the effectiveness of our method.

B.2. Runtime Analysis

We conduct runtime analysis by comparing time over-
head on each step of unsupervised RGB-D registration.

Both our PointMBF and the competitor, UR&R are tested
on an A40 graphic card with an Intel Xeon Platinum 8358P
CPU. We report the mean and standard deviation of running
time of each step.

The result is shown in Table 8. It can be seen that
our multi-scale bidirectional fusion greatly improves per-
formance by a large margin without adding much time over-
head (< 10ms). Furthermore, the extra overhead on feature
extraction is negligible compared to the overhead of corre-
spondence estimation (main overhead).

B.3. Evaluation on ScanNet-SuperGlue

Our experiments in the main paper follow the settings
of UR&R [14], in which view pairs are 20 frames apart.
We find 20 frames apart is less challenging, making the ef-
fectiveness of our method less obvious. Specifically, over
99.8% of the ground truth rotation is under 45°, which
makes ICP performs best under 45° threshold in Table 1.
Moreover, too many easy cases also cause similar medi-
ans in Table 1, especially for chamfer errors. Therefore,
we conduct a more challenging evaluation on ScanNet-
SuperGlue.

ScanNet-SuperGlue is a dataset based on ScanNet [11],
which is provided by SuperGlue [56]. It includes 1500
view pairs with average 480.8 frames apart. Our competi-
tors include UR&R and a fusion-based method named CAT.
CAT utilizes the same visual and geometric branches as our
method and fuses visual features and geometric features us-
ing a concatenation operator at the final stage. All the above
methods including our PointMBF are trained on 3DMatch
[73] and tested on ScanNet-SuperGlue.

As shown in Table 7, our method outperforms the others
by a large margin. Moreover, the median chamfer errors
vary considerably because this experiment includes more
hard cases.

C. Details of the Network Architecture

In this section, we provide details of the network archi-
tecture including feature extractor, point/pixel gathering for
fusion, geometric fitting, keypoint, and differentiable ren-
dering.

C.1. Feature extractor

Figure 6 shows the detailed architecture of the fea-
ture extractor in our PointMBF. As mentioned in section
3.1, we modify a ResNet18 [20] into our visual branch.
The encoder consists of conv2 x, conv3 x, and conv4 x
in ResNet18, and we remove the max pooling in original
conv2 x. The decoder mainly consists of upsampling mod-
ule, concatenation operator, and convblock i.e. shallow per-
ception module. Our geometric branch has a symmetric ar-
chitecture to the visual branch.



Table 6. Registration results under different hyperparameter Kv2g .
Rotation (deg) Translation (cm) Chamfer (mm)

Accuracy↑ Error↓ Accuracy↑ Error↓ Accuracy↑ Error↓
5 10 45 Mean Med. 5 10 25 Mean Med. 1 5 10 Mean Med.

LLT [67] 93.4 96.5 98.8 2.5 0.8 76.9 90.2 96.7 5.5 2.2 86.4 95.1 96.8 4.6 0.1
Kv2g=1 93.7 96.6 98.6 3.2 0.8 79.5 91.1 96.7 6.6 2.2 90.2 96.1 97.2 5.4 0.1
Kv2g=2 93.7 96.4 98.7 3.2 0.8 79.7 91.2 96.6 6.5 2.2 90.3 96.1 97.1 5.3 0.1
Kv2g=4 94.0 96.6 98.6 3.2 0.8 80.1 91.6 96.8 6.6 2.1 90.6 96.3 97.2 5.4 0.1
Kv2g=8 94.3 96.7 98.7 3.1 0.8 80.4 91.6 96.9 6.5 2.1 90.9 96.4 97.3 5.2 0.1
Kv2g=16 94.5 96.9 98.7 3.1 0.8 80.8 91.7 97.0 6.3 2.1 91.1 96.4 97.3 5.1 0.1
Kv2g=32 94.6 97.0 98.7 3.0 0.8 81.0 92.0 97.1 6.2 2.1 91.3 96.6 97.4 4.9 0.1

Table 7. Performance on ScanNet (Splitted by SuperGlue). CAT denotes fusion using direct concatenation.
Rotation (deg) Translation (cm) Chamfer (mm)

Accuracy↑ Error↓ Accuracy↑ Error↓ Accuracy↑ Error↓
5 10 45 Med. 5 10 25 Med. 1 5 10 Med.

UR&R [14] 36.0 49.0 82.3 10.5 18.5 29.7 48.3 26.9 24.6 41.3 48.8 11.1
CAT 47.1 56.8 81.1 6.2 27.7 41.2 55.5 17.7 40.5 54.1 59.7 3.2
Ours 51.1 60.8 82.9 4.7 31.5 44.2 59.3 13.8 44.8 57.5 63.3 1.7

Table 8. Runtime analysis.
Time (ms)

UR&R [14] Ours
Feature Extraction 21.94±20.92 31.92±8.97
Correspondence Estimation 247.88±23.22 255.94±22.95
Geometric Fitting 9.11±5.25 8.91±5.44
Rendering (Just for training) 8.32±6.73 8.10±6.28

C.2. Point/pixel gathering for fusion

During our feature extraction, we embed regional visual
features into geometric features and regional geometric fea-
tures into visual features. In this procedure, it’s important to
gather corresponding points/pixels for fusion. Here, we pro-
vide the details of the point/pixel gathering process, which
is shown in Figure 4.

For visual-to-geometric fusion in the l-th layer, given a
query point, we first determine its neighbor ball with ra-
dius Rl

v2g . Then we project this neighbor ball to the camera
and the pixels falling in the projection region are selected
as candidate pixels for fusion. After that, we filter the im-
proper pixels in candidate pixels. There are two categories
of inproper pixels. The first category is the invalid pixel,
whose corresponding depth z is zero. These pixels may rep-
resent noise or holes in depth images. Embedding features
from invalid pixels may deliver improper information. The
second category is the pixel, whose inverse project point is
out of the neighbor ball of the query point. Points outside
of the query point’s neighbor ball may also be projected to
pixels that are close to the projection of the query point, but
these points are less related to the query point in 3D seman-
tics, so they are also filter out. Finally, we gather the pixels
within remaining pixels for fusion, whose inverse project
points are in the K nearest neighbors of the query point.

For geometric-to-visual fusion in the l-th layer, given

a query pixel, we first determine its inverse project point.
Then the points which fall in the neighbor of the inverse
project point with radius Rl

g2v are selected as candidate
points. Finally, we gather the KNN points of the inverse
project point within the candidate points.

C.3. Keypoint

In this work, we utilize dense descriptions for correspon-
dence estimation. In other words, all the points in the point
clouds are considered as keypoints except invalid points
with depth z=0.

C.4. Geometric fitting

Our geometric fitting is the same as that in UR&R [14],
which is a modified RANSAC [16]. We provide its detail
for convenience in this section.

Given 400 input correspondences C ={(
pS , pT , w

)
i
: 0 ≤ i < 2k

}
with their corresponding

weights, we randomly sample t subsets of C and estimate t
candidate transformations. Each subset contains l randomly
sampled correspondences, and each candidate transforma-
tion is estimated by solving a weighted Procrustes problem
[37] on a subset. Then we choose the candidate transfor-
mation T ∗ with minimal error E(C, T ∗) in equation 7 as
our final estimation. During training, we set t to 10 and l to
80. At test time, we set t to 100 and l to 20.

C.5. Differentiable rendering

The differentiable renderer is a rendering technique that
leverages differentiable programming to optimize and com-
pute gradients of the rendering process. Its basic princi-
ple is shown in Figure 5. It softens the process of projec-
tion, whereby each pixel is the accumulation of multiple
splatted points. This allows each point to receive gradients



Corresponding
 pixels

Query point

Gathered pixel

Invalid pixel
(z = 0)

Ungathered pixel

Corresponding
 points

Query pixel Gathered point

Ungathered point

 Point out 
of range

Inverse project 
point of the 
query pixel 

 Pixel whose inverse
project point 
out of range

Visual-to-geometric Geometric-to-visual

Figure 4. Point/pixel gathering for fusion.

from multiple pixels, avoiding the local gradient [33] issues
caused by hard rasterization. Furthermore, the accumula-
tion strategy employed in the soft projection approximates
the occlusion observed in the natural world. We implement
our differentiable renderer using Pytorch3d [53]. It takes
transformed point clouds as input and outputs rendered im-
ages for photometric loss calculation.

Splatted points

Rendered pixel

3D points

Figure 5. The basic principle of differentiable rendering. Differ-
entiable rendering softens the process of projection. Each 3D point
affects a certain region of pixels by splatting itself to a region, and
the rendered pixels are the accumulation of all the splatted points.

D. Qualitative Visualization
We provide detailed visualization in this section. We

visualize the inputs, extracted features, generated corre-
spondences, and final registration results in two challenging
scenes, including cluttered and ambiguous scenes.

The results of the cluttered scene are shown in Figure
7. The first two rows show the registration of two single

branches, and the last row shows ours. It can be seen that
in a cluttered scene, there exist complex semantics, partial
overlap, and blur caused by camera jitter, which make reg-
istration challenging. Visual and geometric branches can
not deal with it perfectly and tend to generate more out-
lier correspondences, leading to registration failure. But our
method considers both semantics and local geometry, tends
to avoid wrong correspondences.

The results of the ambiguous scene are shown in Figure
8. The first two rows show the registration of two single
branches, and the last row shows ours. It can be seen that
in an ambiguous scene, there exist many ambiguous and
repetitive structures such as floors, walls, and symmetri-
cal objects without textures, making correspondences based
on a single modality contain a large proportion of outliers.
Our fusion considers both semantics from RGB information
and local geometric distributions from point clouds, which
greatly improves the performance. For example, as shown
in Figure 9, the visual features can not distinguish the hook
from the armrest due to similar local texture and the geo-
metric features produce more wrong correspondences be-
cause of too many repetitive surfaces in this scene. How-
ever, our fused features successfully distinguish them and
produce correspondences from a more reliable area.



G2V V2G

G2V V2G

G2V V2G

G2V V2G
R

es
ne

tb
_B

, n

C
on

v1
D

, n
, 2

n

C
on

v1
D

, n
, n

/2

K
PC

on
v,

 n
/2

, n
/2

C
on

v1
D

, n
/2

, 2
n

A
dd

R
es

ne
tb

_A
, n

C
on

v1
D

, n
, n

/2

K
PC

on
v,

 n
/2

, n
/2

C
on

v1
D

, n
/2

, 2
n

A
dd

KPConv,1,64

Resbetb_B,64,128

ConvBlock 3, 64

BasicBlock,64,64

BasicBlock,64,64

Resbetb_A,128,128

Resbetb_B,128,256

Resbetb_A,256,256

BasicBlock,64,128

BasicBlock,128,128

Resbetb_A,256,256

Resbetb_B,256, 512

Resbetb_A, 512,512

BasicBlock,128,256

BasicBlock,256,256

Upsample

Concatenation

Conv1D,768,256

Upsample

Concatenation

ConvBlock,384,128

Upsample

Concatenation

Conv1D,384,32

Upsample

Concatenation

ConvBlock,192,32

C
on

vB
lo

ck

C
on

v2
D

, n
1,

 n
2

B
at

ch
N

or
m

2D

R
el

u

Concatenation

Linear,64,32

Input RGB Image Input Point Cloud

Extracted Features

conv2_x

conv3_x

conv4_x

Figure 6. The detailed architecture of our feature extractor.



Visual

Geometric

Fusion

Inputs CorrespondencesFeatures Estimated Alignment

Figure 7. Visualization on RGB-D registration in cluttered scene. The features are visualized by mapping them to colors by t-SNE
[58]. The red lines denote the outlier correspondences, while the green lines denote the inlier correspondences.

Visual

Geometric

Fusion

Inputs CorrespondencesFeatures Estimated Alignment

Figure 8. Visualization on RGB-D registration in ambiguous scene. The features are visualized by mapping them to colors by t-SNE
[58]. The red lines denote the outlier correspondences, while the green lines denote the inlier correspondences.



(a) Correspondences from 
visual features

(b) Correspondences from 
geometric features

(c) Correspondences from 
our features

Figure 9. Zoom-in visualization for correspondences in Figure 8. The red lines denote the outlier correspondences, while the green lines
denote the inlier correspondences. The visual features can not distinguish the hook from the armrest and the geometric features confuse
the floor with the wall. But our fused features can generate reliable correspondences for registration as they consider the complementary
information from RGB-D data.


