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A. Appendix

In this Appendix, we first elaborate on the societal im-
pact (Appendix B), limitations (Appendix C) and the use of
datasets (Appendix D) in RLIPv2. Next, we provide tech-
nical details of the box embedding (Appendix E) described
in Sec. 4.2.2 of the main paper and cross attention modules
(Appendix F) described in Eq. (2) of the main paper. Fi-
nally, we present additional experiments (Appendix G) to
further validate the effectiveness of our approach.

B. Societal Impact

Our work RLIPv2 can potentially offer societal and
commercial benefits. From the data perspective, RLIPv2
proposes a relational pseudo-labelling pipeline that avoids
time- and cost-intensive work and obtains reasonable re-
lation labels. From the pre-training perspective, RLIPv2
could perform more efficient pre-training and show promi-
nent data efficiency that can potentially save computational
cost. Nonetheless, we acknowledge that HOI detection and
SGG are dual-use, meaning that it can be used for bene-
ficial and malicious purposes. For example, the improved
technologies can be applied to facilitate surveillance activi-
ties. Moreover, due to the bias of the pre-training and fine-
tuning datasets, our algorithms can not guarantee equal per-
formance for all demographic groups. Therefore, we em-
phasize that our pre-training and fine-tuning method is more
of a proof-of-concept and requires rigorous evaluation and
oversight when deploying for application.

C. Limitations

As mentioned in the main paper, our framework requires
an external captioner to generate captions for relation pars-
ing. One limitation of our method is that the performance
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depends on the quality of the captions. For instance, web-
scale datasets for BLIP pre-training are usually noisy and
lack diverse relation descriptions, e.g., some words might
be excessively used but convey only ambiguous information
like “with” and “near”. This is also confirmed by Tab. 6 of
the main paper, showing that fine-tuning on curated style
dataset like COCO Caption [4] is expected.

D. Datasets Used in This Work

Licenses. We uses three datasets for pre-training and
three datasets for downstream transfer in RLIPv2. The fol-
lowing datasets are used, each governed by their license:
the Objects365 [25], COCO [23], Visual Genome [17] and
Open Images v6 [18] datasets are licensed under a Creative
Commons Attribution 4.0 License; the HICO-DET [2, 1]
dataset is licensed under a CCO: Public Domain license; the
V-COCO [10] dataset is licensed under an MIT license.

Release of personally identifiable informa-
tion/offensive content/consent. = We affirm that no
data will be disclosed as part of our research. Our re-
search relies on public domian datasets: Objects365 [25],
COCO [23], Visual Genome [17], Open Images v6 [18],
HICO-DET [2, 1] and V-COCO [10], which we deem
to pose a minimal risk of exposing personal information
or offensive content. Regarding consent, we have not
undertaken an independent inquiry beyond the scope of the
original dataset releases.

E. Details about the Box Embedding

As mentioned in Sec. 4.2.2 of the main paper, we use
box embeddings to encode labels and positions of the boxes
BS,BO into queries for decoding. Specifically, regard-
ing the label embeddings, we adopt the gradient-detached
language features after ALIF. To align the dimension of
language features (i.e., 768) with DDETR features (i.e.,
256), we apply linear projections to the language features.



Threshold Overlap \ Rare Non-Rare Full
X 13.54 12.36 12.63

0.7 v 14.13 15.01 14.81

X 12.66 12.76 12.74

08 v 14.63 14.94 14.87

X 12.00 12.38 12.49

0.9 v 13.28 14.35 14.10

X 11.66 12.08 11.98

0.95 v 13.69 14.37 1421

Table 1: Parameter sensitivity analysis of the threshold for the
CLIP tagging method. “Overlap” denotes the “overlap” prior for
SO pairs introduced in Sec. 4.2.2. We report zero-shot (NF) results
pre-trained on VG and COCO.

Threshold 7 | Rare Non-Rare Full
- | 1212 14.07 13.62

0.1 12.95 14.98 14.49
0.15 13.12 15.14 14.67

0.2 15.33 15.54 1549

0.25 12.81 14.68 14.25

0.3 11.25 14.52 13.77

Table 2: Parameter sensitivity analysis of 1 for R-Tagger.
Zero-shot (NF) is reported after pre-training RLIPv2-ParSeD on
VG and pseudo-labelled COCO. ”-” denotes pre-training on VG.

Regarding the position embedding, we project the boxes
(z,y,w, h) into 256 dimensions where x, y are center coor-
dinates and w, h are width and height of the box. Equipped
with these two embeddings as queries, we can perform
DDETR decoding [33].

F. Details about Cross-attn(C(® L)

To perform cross attention as mentioned in Eq. (2) of the
main paper, we compute the attention scores of one modal-
ity with respect to the other modality, and then use scores
to aggregate features from the other modality [0, 31, 7].
Specifically, we follow the instantiation of the cross atten-
tion module from [20, 31]. The calculation can be formu-
lated as:

o CXG ACK) )T

c) — cOw, LD = LOW, At =
Vd

(€]

L = LOW;, € = softmax(Att) LW,  (2)

cO = cOwy LO = softmaX(AttT)Cw’v)Wg 3)

where W7, W5 are trainable parameters for query embed-
ding; W3, Wj are trainable parameters for value embed-
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Figure 1: Evaluation curve comparisons of RLIPvl and

RLIPv2 on HICO-DET. RLIPv1 and RLIPv2 are both pre-trained

on VG. By default, RLIPv1 is fine-tuned for 60 epochs follow-

ing [27] and RLIPV2 is fine-tuned for 20 epochs. We also fine-tune

RLIPv1 for 20 epochs for a fair comparison.

Model Datasets \ Epochs Zero-shot (NF)
RLIP-ParSeDA VG 50 11.34/14.56 / 13.82
RLIP-ParSeDA  VG+COCO 50 15.05/15.55/15.44

13.03/14.98 / 14.53

RLIPv2-ParSeDA VG 20
RLIPv2-ParSeDA VG+COCO 20 15.00/16.60/ 16.23

Table 3: Comparisons of scaling with different models. We use
ResNet-50 by default. Results are evaluated on HICO-DET under
zero-shot (NF) setting.

Model Pseudo-label Type‘ Rare Non-Rare Full

R-Tagger 1500 1660 16.23
RLIPv2-ParSeDA  RLIPv2-ParSeD |11.96 14.87  14.20

Table 4: Comparisons of different pseudo-label types.
RLIPv2-ParSeDA is pre-trained on VG and pseudo-labelled
COCO. Results are evaluated on HICO-DET under zero-shot (NF)
setting.

ding; Wy, Wy are trainable parameters for output embed-
ding; Att denotes attention scores; d is embedding dimen-
sion, which is set to 256 following [31, 20]; the feature di-
mension of C(© and L) are 256 and 768, respectively.
Note that to reduce computation, we only perform cross at-
tention on the flattened vision features from the last layer
with the smallest scale.

G. Additional Experiments

The choice of the threshold for the CLIP tagging
method. The CLIP tagging method requires a pre-defined
threshold to tag relations as described in the Experiment
section of the main paper (Comparisons of different re-
lation tagging strategies.). Therefore, to choose an op-



VG+COCO

VG+COCO+0365

VG
ResNet-50 | 12.12/14.07/13.62
Swin-T 12.17/15.01/14.36
Swin-L 15.19/17.46/16.94

15.08 / 15.10/ 15.09
14.89/16.70/16.28
20.03/19.75/19.81

17.21/16.84/16.93
20.34/18.27/18.75
26.75/20.61/22.02

Table 5: Model and dataset scaling experiments using RLIPv2-ParSeD. Results are evaluated on HICO-DET Rare/Non-Rare/Full sets

under zero-shot (NF) setting.

Method | Backbone | UC-RF UC-NF
VCL [12] ResNet-50 | 10.06/24.28/21.43 16.22/18.52/18.06
ATL [13] ResNet-50 | 9.18/24.67/21.57 18.25/18.78 / 18.67
FCL [14] ResNet-50 | 13.16/24.23/22.01 18.66/19.55/19.37
GEN-VLKT [22] ResNet-50 | 21.36/32.91/30.56 25.05/23.38/23.71
RLIPv1-ParSeD [27] | ResNet-50 | 16.43/30.59/27.76 16.99/24.71/22.93
RLIP-ParSe [27] ResNet-50 | 19.19/33.35/30.52 20.27/27.67/26.19
RLIPv2-ParSeD ResNet-50 | 19.33/34.22/31.24 21.18/28.95/27.40
RLIPv2-ParSeD Swin-T 23.80/38.23/35.34 21.88/33.63/31.28
RLIPv2-ParSeD Swin-L 30.98/43.67/41.13 23.16/39.97/36.61
RLIPv2-ParSeDA ResNet-50 | 21.45/35.85/32.97 22.81/29.52/28.18
RLIPv2-ParSeDA Swin-T 26.95/39.92/37.32 21.07/35.07/32.27
RLIPv2-ParSeDA Swin-L 31.23/45.01/42.26 22.65/40.51/36.94

Table 6: Comparisons with methods on HICO-DET under UC-RF and UC-NF settings. Results are reported on Unseen/Seen/Full

sets.

timal threshold, we traverse a range of values and evalu-
ate the pre-training performance. The results are presented
in Tab. 1. From this table, we observe that utilizing the
“overlap” prior can constantly outperform its naive coun-
terpart without the “overlap” prior. Moreover, our analysis
indicates that a threshold of 0.8 leads to the best perfor-
mance for the CLIP tagging method.

The choice of threshold 7 for R-Tagger. To choose
pseudo-labelled triplets for pre-training, we traverse a range
of 1 values for R-Tagger to select triplets with relation con-
fidence higher than this threshold. By default, we adopt or-
acle captions from COCO Caption [4], which provides an
average of N¢g, = 5 captions per image. We tag pseudo-
labels on COCO and pre-train RLIPv2-ParSeD on VG and
pseudo-labelled COCO. The results are presented in Tab. 2,
which indicates that the optimal value for n is 0.2. It is
worth noting that all experiments in this table are initial-
ized with COCO object detection parameters. Therefore,
the highest performance boost (13.62 — 15.49) is obtained
by the additional tagged relations from COCO, rather than
by the inclusion of an additional COCO dataset.

Evaluation curve comparisons. As detailed in Tab. 3
of the main paper, we show the comparisons of RLIPv1 and
RLIPv2 concerning pre-training and fine-tuning. To further
validate the effectiveness of ALIF, we compare their fine-
tuning evaluation curves on HICO-DET in Fig. 1. As can
be observed from the figure, RLIPv2 can converge much

faster than its RLIPv1 counterparts.

Dataset scaling using RLIP. This paper introduces
RLIPv2 as a novel method that facilitates scaling due to its
convergence speed. Another alternative is to adopt RLIPv1
to scale up relational pre-training. In Tab. 3, we aim to com-
pare the effect of scaling using RLIPvl and RLIPv2. We
can observe that by performing earlier and deeper gated fu-
sion, ALIF gains slightly better performance boost by cost-
ing 0.4x pre-training time. Therefore, RLIPv2 is a more
efficient and scalable approach for scaling up relational pre-
training.

Comparisons of pseudo-label types. To validate the
effectiveness of R-Tagger that utilizes groundtruth object
annotations as input, we compare R-Tagger with another
baseline that generates pseudo-labels by applying the pre-
trained RLIPv2 model to perform SGG on object detection
datasets as mentioned in Sec. 4.2.2. To leverage the anno-
tated object boxes for the new baseline, we match the gen-
erated boxes with the annotated ones. If a generated box is
matched with one given annotated box (IoU > 0.5), we sub-
stitute the generated box with the annotated box to ensure
the accuracy of the box position. To seek a fair comparison,
we use the pre-trained RLIPv2-ParSeD (ResNet-50) to gen-
erated pseudo-triplets, which is identical to the base model
of R-Tagger. To select triplets, we use an identical selection
threshold to R-Tagger, i.e., 0.2. Then, we pre-train on VG
and pseudo-labelled COCO datasets to compare the quality



Method Backbone \ 1% Data 10% Data
RLIP-ParSeD [27] ResNet-50 | 16.22/18.92/18.30 15.89/23.94/22.09
RLIP-ParSe [27] ResNet-50 | 17.47/18.76/18.46 20.16/23.32/22.59
RLIPv2-ParSeD  ResNet-50 | 19.87 /24.04 /23.08 21.51/27.84/26.38
RLIPv2-ParSeD Swin-T 26.37/27.29/27.08 27.85/31.41/30.59
RLIPv2-ParSeD Swin-L 30.49/30.80/30.73 33.90/35.93/35.46
RLIPv2-ParSeDA  ResNet-50 | 22.13/24.51/23.96 23.28/30.02/28.46
RLIPv2-ParSeDA Swin-T 24.26/28.92/27.85 28.31/32.93/31.87
RLIPv2-ParSeDA Swin-L 31.89/32.32/32.22 34.75/38.27/37.46

Table 7: Comparisons with methods on HICO-DET under few-shot settings. Results are reported on Rare/Non-Rare/Full sets.

. HICO-DET \ V-COCO
Model Backbone | Extra Relations Zero-shot (NF) Fully-finetuning ‘ APfolle Apfﬁfle
InteractNet [9] R50-FPN - - 7.16/10.77 1 9.94 40.0 -
UnionDet [15] R50-FPN - - 11.72/19.33/17.58 | 475 56.2
PPDM [21] HG104 - - 13.97/24.32/21.94 - -
HOTR [16] R50 - - 17.34/27.42/25.10 | 552 64.4
QPIC [26] R50 - - 21.85/31.23/29.07 | 58.8 61.0
OCN [28] R50 - - 25.56/32.51/3091 | 64.2 66.3
CDN [30] R50 - - 27.39/32.64/31.44 | 61.7 63.8
GEN-VLKT [22] R50 - - 29.25/35.10/33.75 | 62.4 64.5
QAHOI [3] Swin-L" - - 29.80/37.56/35.78 - -
UniVRD [32] ViT-H/14" - - 31.65/39.99/38.07 | 65.8 66.9
RLIPv1-ParSeD [27] R50 VG 11.20/14.73/13.92 24.67/32.50/30.70 | 61.7 63.8
RLIPv1-ParSe [27] R50 VG 15.08/15.50/15.40 26.85/34.63/32.84 | 619 64.2
RLIPv2-ParSeD R50 VG 12.12/14.07/13.62 26.47/33.51/31.89 | 619 64.5
RLIPv2-ParSeD R50 VG+COCO 15.08/15.10/15.09 26.61/33.78/32.13 | 629 65.3
RLIPv2-ParSeD R50 VG+COCO+0365 | 17.21/16.84/16.93 27.27/35.08/33.29 | 63.8 66.4
RLIPv2-ParSeD Swin-T | VG+COCO+0365 | 20.34 /18.27 /18.75 31.44/38.51/36.89 | 66.6 69.1
RLIPv2-ParSeD Swin-L | VG+COCO+0365 | 26.75/20.61 / 22.02 42.76 / 44.67 / 44.23 | 71.0 73.2
RLIPv2-ParSeDA R50 VG 13.03/14.98/14.53 27.01/35.21/33.32| 63.0 65.1
RLIPv2-ParSeDA R50 VG+COCO 15.00/16.60/16.23 27.89/35.27/33.57 | 64.5 66.7
RLIPv2-ParSeDA R50 VG+COCO+0365 | 19.64/17.24/17.79 29.61/37.10/35.38 | 65.9 68.0
RLIPv2-ParSeDA Swin-T | VG+COCO+0365 | 21.24/19.47 / 19.87 33.66 / 40.07 / 38.60 | 68.8 70.8
RLIPv2-ParSeDA Swin-L | VG+COCO+0365 | 27.97/21.90/23.29 43.23/45.64/45.09 | 72.1 74.1

Table 8: Comparisons with previous methods on HICO-DET and V-COCO. Results on HICO-DET are reported on Rare/Non-

Rare/Full sets. R50 and HG denote ResNet-50 [

] and Hourglass [

]. * denotes the backbone is pre-trained with 384 x 384 resolution,

while others use 224 x 224. findicates the backbone is pre-trained using LiT [29], then fine-tuned on Objects365, COCO and HICO with

the objective of object detection.

of the pseudo-labels in Tab. 4. As can be observed from
the table, by utilizing groundtruth box information when
inferring relations, R-Tagger can generate more authentic
pseudo-labels, thus benefiting relational pre-training.

Model scaling and dataset scaling using RLIPv2-
ParSeD. In addition to scaling experiments using RLIPv2-
ParSeDA in the main paper, we also present the model
and dataset scaling experiments using RLIPv2-ParSeD
in Tab. 5. In terms of data, adding COCO and Objects365
can both boost performance, and the benefit of adding data
exhibits a log scaling trend [5]. Models pre-trained with
Objects365 consistently have better Rare result, which we

attribute to the distribution misalignment of Objects365 and
HICO-DET [8]. In terms of models, switching to stronger
backbone models can improve the data efficiency at the cost
of larger amounts of computation.

More results using RLIPv2-ParSeD on HICO-DET
under UC-NF and UC-RF settings. We provide more
results under UC-NF and UC-RF settings using RLIPv2-
ParSeD in addition to RLIPv2-ParSeDA in Tab. 6. It is
worth noting that UC-RF denotes 120 unseen combinations
(UC) among 600 combinations are selected by a rare-first
(RF) order, while UC-NF denotes that 120 unseen combi-
nations among 600 combinations are selected by a non-rare



Caption type | Ncap Nunique | Rare Non-Rare Full

- (baseline: w/o captions) | - - | 12.12 14.07 13.62
BLIP (beam) 1 1 9.86 12.02 11.52

BLIP (nucleus) 10 9.97 15.08 15.10 15.09
BLIP-2 (beam) 1 1 9.98 12.23 11.72
BLIP-2 (nucleus) 10 3.26 11.76 12.85 12.60
BLIP + BLIP-2 (nucleus) 20 13.18 14.74 15.52 15.34
BLIP (dense captions, beam) | 28.63 10.40 | 14.25 15.14 14.94

Table 9: Comparisons of different captioners. “beam” and “nucleus” denote beam search and nucleus sampling. Nynique denotes the
number of unique captions after deduplication. By default, we adopt COCO Caption fine-tuned BLIP and BLIP-2 model.

first (NF) order. We can observe that (i) under the UC-
RF setting, switching to stronger backbones improves the
performance of all metrics; (ii) under the UC-NF setting,
switching to stronger backbones enhances all metrics ex-
cept the metric on the Unseen set. We attribute this to the
significant object distribution misalignment between Seen
and Unseen sets.

More results on few-shot HOI detection. We provide
more results under few-shot settings using RLIPv2-ParSeD
in addition to RLIPv2-ParSeDA in Tab. 7. We can observe
that RLIPv2 exhibits remarkable data efficiency by scaling
up pre-training. Notably, the largest pre-trained model ob-
tains 32.22mAP when fine-tuned on 1% data, which outper-
forms many methods that fine-tune on 100% data.

More results under fully-finetuning and zero-shot
(NF) settings on HOI detection. We present more re-
sults using RLIPv2-ParSeD on HICO-DET and V-COCO
in Tab. 8. We draw similar conclusions from this table that
(i) dataset and model scaling can both boost the final per-
formance on two datasets; (ii) on HICO-DET, the benefit
of pre-training is more prominent on zero-shot than fully-
finetuning, especially on the Rare set.

The effect of using diverse captioning models. To
comprehensively study the effect of using other captioners,
we adopt the more advanced BLIP-2 [19] to implement our
method. The results are shown in Tab. 9. The results indi-
cate that BLIP-2 (beam) slightly outperforms BLIP (beam),
but BLIP-2 (nucleus) trails BLIP (nucleus). We attribute
this to the low diversity of BLIP-2 captions as BLIP-2 gen-
erates more deterministic captions. To verify this hypothe-
sis, we combine captions from BLIP and BLIP-2, obtaining
better generalization performance.

The effect of dense captioning on pairwise union re-
gions. We show the result in the final row of the above
table. Dense captioning on pairwise union regions can im-
prove over the baseline (the first row), offering an alterna-
tive to improve the caption diversity in addition to utiliz-
ing nucleus sampling. Thus, the potential for developing
more advanced captioning schemes to bolster the quality of
pseudo-labels holds considerable promise. We mark this
endeavor as a research focus for one of our future works.
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