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A. Network structure

Our detailed network structure is shown in Fig. 1 and
Fig. 2. The dimension of each convolutional layer and each
tensor in the network is marked in the figure.

In the semantic encoder, we have six levels of layer
groups, and each layer group consists of two convolu-
tional layers with leaky ReLU non-linearity. The layers in
the same group have the same number of output channels
marked in the figure. We use 3×3 convolutional kernels ev-
erywhere. The dilation value is set as 2 whenever we need
to reduce the dimension by half.

The iterative decoder has a flow estimator, a context net-
work, and a upmask net, which are shared across all levels.
Some 1×1 convolutional layers are applied to transform the
input features of different levels to features with the same

number of channels so that they can be fed into the same
shared flow estimator.

Our upmask net outputs a 144-channel mask for upsam-
pling. We first unfold the 144 channels to 16 groups, each
of which has 9 values. Since we are upsampling four times,
each original value needs to correspond to 16 values in the
output, and each output value is computed as a convex lin-
ear combinition of the 3 × 3 input window, so each group
of 9 values in the mask are used as the coefficients here. We
apply a softmax transform to make sure these 9 coefficients
sum up to be one.

B. Supplementary results
B.1. Full data tables

We provide the full data table of all our experiments on
the validation set in Tabs. 1 to 4. For test sets, we have
submitted test results to the benchmark website, so please
refer to the website for full evaluations.

B.2. More qualitative results

More qualitative results on the KITTI-2015 test set are
shown in Fig. 3.

B.3. Time efficiency

Our network runs very efficiently thanks to its small size.
Our network with semantic encoder and learned upsampler
only has 2.6M parameters in total, so the model parameter
size is only around 10MB.

Training We run 200k iterations in total. For our basic
network with a semantic encoder and a learned upsampler,
it takes around 44-48 hours on 2 NVIDIA GeForce RTX
2080 Ti GPUs. After adding semantic augmentation, it
takes longer because we add a third forward pass of the net-
work, but since we only use semantic augmentation for the
last 50k iterations, the running time is still feasible: 54-58
hours on 2 NVIDIA GeForce RTX 2080 Ti GPUs.
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Figure 1. Semantic encoder network structure. Purple numbers show the number of parameters. B is batch size; (H,W ) is the input
resolution.
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Figure 2. Iterative decoder network structure. Purple numbers show the number of parameters. The 1×1 convolution layers are not shared,
so we show the number of parameters at each level. B is batch size; (hl, wl) is the resolution of the l-th level; cl is the number of channels.

Inference For inputs of size 256× 832, inferring the for-
ward flow of each sample takes 0.0168(±0.0005) second,
i.e. 60 frames per second, on a single NVIDIA GeForce
RTX 2080 Ti GPU.

Tips on how to process semantic inputs efficiently We
need to one-hot encode the semantic map input before feed-
ing into the network. We do one-hot transformation after

data augmentation to save time because otherwise, doing
horizontal flip or bilinear interpolation for a 19-channel map
is very time-consuming. We also avoid flipping or rescaling
these 19-channel semantic maps when we copy and paste
occluder objects across samples for semantic augmentation.



up no sm enc aug KITTI-2015 KITTI-2012
Fl all Fl noc EPE all EPE noc EPE occ Fl all Fl noc EPE all EPE noc EPE occ

10.360 8.528 2.901 2.068 6.967 5.707 3.741 1.406 0.886 4.417
1 9.920 8.087 2.685 1.885 6.568 5.484 3.606 1.354 0.861 4.205
2 9.830 7.951 2.646 1.857 6.396 5.450 3.592 1.339 0.860 4.115
3 9.745 7.977 2.608 1.853 6.543 5.359 3.511 1.328 0.850 4.098
4 9.745 7.951 2.644 1.852 6.553 5.437 3.564 1.343 0.852 4.183

✓ 10.220 8.221 2.825 1.970 6.748 5.728 3.725 1.420 0.888 4.495
✓ ✓ 8.871 7.142 2.605 1.849 6.037 5.314 3.374 1.386 0.876 4.347
✓ ✓ 3 8.260 6.577 2.415 1.729 5.794 4.964 3.111 1.291 0.825 4.007
✓ ✓ ✓ 8.801 6.748 2.484 1.595 6.642 5.421 3.281 1.411 0.852 4.653
✓ ✓ 3 ✓ 7.788 5.963 2.179 1.399 5.635 4.872 2.932 1.284 0.788 4.175

Table 1. Full validation results for Table 1, 2, & 3 in the main paper (EPE/px and Fl/%). Metrics evaluated at ‘all’ (all pixels, default
for EPE), ‘noc’ (non-occlusions), ‘occ’ (occlusions), ‘bg’ (background), and ‘fg’ (foreground). Key metrics (used in official ranking) are
underlined. ‘Ours (baselinse)’= up + no sm; ‘Ours (+enc)’= up + no sm + enc=3; ‘Ours (+enc +aug)’ = ‘Ours (final)’ = up + no sm + enc=3
+ aug. For all metrics, lower is better.

Options of aug KITTI-2015 KITTI-2012
Fl all Fl noc EPE all EPE noc EPE occ Fl all Fl noc EPE all EPE noc EPE occ

Ours (final) 7.788 5.963 2.179 1.399 5.635 4.872 2.932 1.284 0.788 4.175
start from 100k 7.916 6.013 2.186 1.396 5.406 4.984 2.998 1.302 0.803 4.984
vehicles only 7.940 6.110 2.212 1.435 5.781 4.950 3.041 1.304 0.804 5.571

loss on new occ 8.149 6.105 2.272 1.418 5.620 5.167 3.083 1.361 0.810 5.892

Table 2. Full validation results for Table 4 in the main paper (EPE/px and Fl/%).

road car terrain vegetation sidewalk building wall pole fence
Proportion 42.4% 17.6% 14.0% 11.6% 6.2% 4.1% 1.3% 1.1% 0.9%

ARFlow [3] 4.573 15.791 9.420 15.339 4.606 6.000 16.336 10.745 46.297
Ours (final) 3.674 10.171 8.737 13.470 3.085 4.275 11.180 9.437 39.120
Rel. impr. 19.7% 35.6% 7.3% 12.2% 33.0% 28.8% 31.6% 12.2% 15.5%

Rew. contri. 19.0% 49.4% 4.8% 10.9% 4.7% 3.5% 3.4% 0.7% 3.3%
traffic sign truck bicycle traffic light person rider motorcycle sky bus train

Proportion 0.4% 0.2% 0.1% 0.1% 0.1% <0.1% <0.1% <0.1% <0.1% <0.1%
ARFlow [3] 5.254 10.461 5.421 2.290 3.852 20.811 13.385 28.547 17.179 12.564
Ours (final) 4.681 9.526 4.945 2.060 2.627 19.581 3.620 38.521 17.747 9.615
Rel. impr. 10.9% 8.9% 8.8% 10.0% 31.8% 5.9% 73.0% -34.9% -3.3% 23.5%

Rew. contri. 0.1% 0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1%

Table 3. Full data for Table 5 in the main paper. We show the relative improvements and reweighted contributions of all 19 classes.

Method KITTI-2015 KITTI-2012
Fl all Fl noc EPE all EPE noc EPE occ Fl all Fl noc EPE all EPE noc EPE occ

ARFlow (our impl.) 13.210 10.190 4.081 2.878 9.398 7.360 4.434 1.713 0.994 5.806
Ours (baseline) 12.270 8.642 3.809 2.433 9.907 7.165 4.104 1.730 0.997 5.915
Ours (+enc)† 11.280 7.749 3.327 2.121 8.749 6.583 3.596 1.561 0.912 5.267

Ours (+enc +aug)† 10.320 6.950 2.640 1.558 7.121 6.204 3.488 1.489 0.855 5.150

Table 4. Full validation results for Table 6 in the main paper (EPE/px and Fl/%). † denotes models with semantic inputs.



Figure 3. More qualitative results from the KITTI-2015 test set. Sample IDs are shown on the top left corners of the images.



C. Other explorations

We have also explored many other methods to apply se-
mantics in the unsupervised optical flow network. Although
these trials are not very successful and thus are not proposed
in our final model, we briefly discuss our findings for the
readers’ reference.

C.1. Adding semantic inputs to the decoder

We also tried adding semantic inputs to the decoder. This
is because the current semantic maps are used as encoder
inputs, which are somewhat distant from our final output,
so we were wondering whether adding semantic cues to the
decoder directly could help it decode a better flow.

We used two shallow convolutional layers to extract a
feature map from semantic input and downsample that fea-
ture to different resolutions for different levels of the itera-
tive decoder. We found that such direct injection of seman-
tic input into the decoder did improve the vanilla ARFlow
without semantic encoder. However, it helped little for our
adapted ARFlow model with semantic encoder.

C.2. Adding a semantic consistency loss

As applied in some previous work [1], the semantic con-
sistency loss enforces the output correspondence to have
consistent semantic classes. This is similar to the photo-

Figure 4. Left: two input frames and the semanic inputs; top right:
forward and backward flow; bottom right: forward and backward
semantic consistency loss

metric loss, but we use the output flow to warp the semantic
inputs instead of the image inputs.

After experimenting this semantic consistency loss, un-
fortunately, we did not find it very helpful to our network.
There are mainly two reasons.

Firstly, unlike the image input, which consists of roughly
continuous RGB values, the semantic input is categorical,
and it is common to have large areas of the same seman-
tic class. Thus, one may understand the semantic map as
a highly texture-less channel of input, which cannot help
differentiate different regions of the same semantic class.
Also, since a large area has the same semantic class, tun-
ing flow in that region makes no difference to the semantic
consistency loss, which means the gradient will be zero for
most pixels except for those near the semantic boundaries.

One solution to the aforementioned problem is to use a
continuous semantic class distribution as input. For exam-
ple, we can use the softmax values from the semantic seg-
mentation network as our semantic input. However, as we
mentioned earlier in Appendix B.3, doing augmentations on
a 19-channel semantic input is very time-consuming.

Secondly, semantic consistency loss also does not work
on occlusion regions, where photometric loss has issues, so
we have to mask out the occlusion regions for both losses.
For non-occluded regions, the current photometric loss is
already good enough to find semantically consistent output
by itself, so semantic consistency does not add much here.
As illustrated in Fig. 4, we trained a model with only pho-
tometric loss for only 50k iterations, and most part of the
frame is already very consistent on semantics. The incon-
sistent parts are mostly either on semantic boundaries or in
the occlusion region.



C.3. Using semantic boundaries for the boundary-
aware smoothness loss

Most previous methods use smoothness loss to constrain
a smooth flow output. However, motion is not smooth
across motion boundaries, where motion changes abruptly.
Motion boundaries usually coincide with object boundaries,
so object boundaries can be a good approximation to indi-
cate where smoothness loss should not be imposed.

Due to lack of semantic information, current meth-
ods use image edges instead to generate a weight map to
reweigh smoothness loss at different pixels. In our case,
since semantic maps are available, we use this information
to create much clearer object boundaries.

We start from the same smoothness loss in ARFlow [3].
As visualized in Fig. 5, the weights based on image edges
are computed as the sum of the second-order image deriva-
tives on both x and y-axis, i.e., the Laplacian of the 2D op-
tical flow field. In comparison, our semantic boundaries are
much cleaner.

However, both image edges and semantic boundaries
have issues. Image edges usually provide boundaries within
the same object, such as the edge of the shadow on the
road, and they also have fewer boundaries in the dark re-
gion where image values are similar. Meanwhile, seman-
tic boundaries are computed from semantic segmentation,
where different instances of the same semantic class are not
differentiated. This causes big issues when, for example,
the semantic map of multiple cars merge into one.

Figure 5. Top: weights based on image edges; bottom: weights
based on semantic boundaries

To fix these issues, we attempted to use a combination
of both image edges and semantic boundaries. We find im-
age edges in the vehicle (car, truck, bus, train), people (per-
son, rider), and small vehicle (motorcycle, bicycle) regions,
combined with semantic boundaries else where, as shown
in Fig. 6.

Figure 6. The combined boundary weight

We tried all these boundaries and tuned the weight of the

smoothness loss term in the total loss, and found little dif-
ference in the evaluated results. Moreover, after we add the
learned upampler module in the network, applying smooth-
ness loss is doing more harm than help. This is understand-
able because the goal of the learned upsampler is to make
the network decide which part of the flow output should be
smooth and where should not be smooth. Smoothness loss
imposes a preference that the motion should be smooth in
the form of zero second-order derivatives, which is not data-
driven and may not be precise for real-world motion fields.
Therefore, we ended up turning off the smoothness loss in
our final model.

C.4. Learning the initial flow in the decoder

Driving scenes usually have similar scene layouts (sky
is on the top, and road is on the bottom, etc.). In addi-
tion, the motion of the camera is also mostly moving for-
ward with some occasional slight rotations. These two ef-
fects together create a looming motion, where most objects
are moving closer to the camera. To explain in 2D image
frames, the left part of the image tends to move left, and
the right part tends to move right. The lower part (mostly
roads and sidewalks) also tends to move downwards until
they are out of sight. These observations indicate a strong
motion prior knowledge that can be used to better initialize
our flow estimate.

The current iterative decoder as in ARFlow [3] initialize
the flow estimate as zero motion, which gets refined later
iteration by iteration. However, we can apply the looming
motion prior instead by parameterizing the initial flow using
some learnable parameters. Specifically, for a 256 × 832
input, the highest (6th) level feature has dimension 4 × 13,
so we use a learnable 19 × 4 × 13 × 2 tensor as the prior.
We condition the motion prior on the 19 semantic classes,
so that we can refer to the semantic map input to generate
its initial flow prior based on semantics. Note that we define
the prior specifically forward flow only, and we need to flip
the prior when computing backward flow in our network.

Figure 7. The learned init flow prior for each semantic class



We trained the network with learned initial flow condi-
tioned on semantics, and the learned prior is visualized in
Fig. 7. Overall, we can see that the looming motion pat-
tern is learned by our network. However, for each semantic
class, the network can only learn prior for places where that
class frequently appears. For instance, the upper part of the
road prior is not learned well because there are few road
pixels on the top of the frame.

To better fix this issue, we try to parameterize the mo-
tion prior by its four corners. Specifically, we learn a 2× 2
prior for each class, and bilinear interpolate this 2× 2 prior
to 4 × 13 before using it to construct initial flow based on
semantics. The results are then visualized in Fig. 8. The
network has learned a very smooth and more or less similar
pattern prior for each class.

Figure 8. The learned init flow prior for each semantic class if we
parameterize by coners

In terms of evaluation metrics, both methods improve
slightly by themselves, but we found the improvements be-
came negligible after we apply the semantic segmentation
module. One question here is whether good initialization
matters a lot for our unsupervised flow networks. Since we
refine the flow by many iterations in the decoder, the ini-
tial estimate may not change the results significantly, if the
following refinement units are effective enough.

C.5. Reweighing losses at different semantic regions

Current models usually have different scales of error at
different semantic regions. Semantic classes such as car
are harder to track and thus incur larger errors than other
classes. Also, some classes, such as car and person, are
practically more important for autonomous driving applica-
tions. Therefore, we tried to reweigh the photometric loss
by their semantic class. We give higher weights to classes
like car and person so that the network can focus on improv-
ing those classes more.

However, the results are hard to evaluate numerically.
The current ground-truth labels are mostly concentrated on
the lower part of the frame, so many practically important

objects such as traffic lights, traffic signs and poles only
account for a very small amount of the evaluation. Also,
classes like person, rider, and bicycles do not have flow
labels because reliable CAD models are not available for
these dynamic objects. Based on these issues, finding a bet-
ter evaluation method may be more important.

C.6. Using the epipolar constraint to post-process
the static region flow

Following earlier traditional methods [2, 4], we also ex-
plored the possibility of using the static scene epipolar con-
straint to post-process static optical flow. Since most part of
the frame is static, we can use our correspondences found to
estimate the fundamental matrix between two frames, and
then use epipolar constraints to refine our flow.

This method is mostly targeted on refining optical flow
for those occluded static pixels. For example, a part of the
road or background may be occluded by the moving cars, or
they may simply move out of the frame, so their correspon-
dence is not visible in the other frame. However, we still
want the network to have a best “guess” on where the cor-
respondence is. Most current methods rely on smoothness
to generate those “guesses”. However, given the epipolar
constraint, we limit the searching range of correspondence
to one epipolar line, which may help us “guess” more in-
formatively. Our semantic map inputs tell us where those
static region is, so we can get a more reliable fundamental
matrix estimate.

Estimating the fundamental matrix only requires eight
pairs of corresponding points, so we can select only the
most reliable correspondences for this computation. Specif-
ically, we define “reliable correspondence” based on three
criteria: (1) not in the occlusion region, (2) not on the se-
mantic boundary or image borders, and (3) not from any
(possibly) dynamic semantic class or any texture-less se-
mantic class.

We first compute the occlusion mask through forward-
backward consistency check. Then, we find semantic
boundaries based on our semantic map input and define all
pixels that are ≤ 5 pixels away from any boundary as the
boundary pixels. For reliable static semantic classes, we
include all classes except vehicles (car, truck, bus, train),
people (person, rider), small vehicles (bicycle, motorcycle),
and sky (poor texture). One example is shown in Figs. 9(a)
and 9(b).

After computing the reliable static regions, we use both
forward and backward flow in those regions to create a set of
correspondences between two input frames. We then esti-
mate the fundamental matrix F̂ using RANSAC. For a typ-
ical sample in the KITTI-2015 train set, RANSAC based
on correspondeces in our reliable regions mostly produces
>98% inlier rate.

We then find the correspondences in static regions and



(a) Inputs for post-processing

(b) Computing reliable static region masks

(c) Comparing epipolar errors and true errors

Figure 9. An example for semantic post-processing

check whether they conform to epipolar constraint. For
each point p in the static region of the first frame, we com-
pute the epipolar error

ϵ(p) =
(
(p+ U1→2(p))

TFp
)2

,

where U1→2(p) is the input flow estimate. We find the pix-
els with top 5% epipolar error and refine those by projecting
their current estimated correspondences onto their epipolar
lines. As shown in Fig. 9(c), our epipolar error successfully
detects the part of the frame that has high EPE errors. How-
ever, we tested this method on the KITTI-2015 train set but
did not see much improvements on the evaluation results.
The reason is still under investigation.

References
[1] Min Bai, Wenjie Luo, Kaustav Kundu, and Raquel Urtasun.

Exploiting semantic information and deep matching for opti-
cal flow. In Proceedings of the European Conference on Com-
puter Vision, pages 154–170. Springer, 2016. 5

[2] Junhwa Hur and Stefan Roth. Joint optical flow and tempo-
rally consistent semantic segmentation. In Proceedings of the
European Conference on Computer Vision, pages 163–177.
Springer, 2016. 7

[3] Liang Liu, Jiangning Zhang, Ruifei He, Yong Liu, Yabiao
Wang, Ying Tai, Donghao Luo, Chengjie Wang, Jilin Li, and
Feiyue Huang. Learning by analogy: Reliable supervision
from transformations for unsupervised optical flow estima-
tion. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 6489–6498, 2020. 3, 6

[4] Jonas Wulff, Laura Sevilla-Lara, and Michael J Black. Optical
flow in mostly rigid scenes. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pages
4671–4680, 2017. 7


