
Small Object Detection via Coarse-to-fine Proposal Generation
and Imitation Learning:

Supplementary Materials

Xiang Yuan Gong Cheng * Kebing Yan Qinghua Zeng Junwei Han
School of Automation, Northwestern Polytechnical University, Xi’an, China

{shaunyuan, kebingyan, zengqinghua}@mail.nwpu.edu.cn, {gcheng, jhan}@nwpu.edu.cn

1. Overview
This supplementary material is intended to improve the

clarity and comprehensibility of our research. It primarily
provides in-depth information about the training procedure
and the construction of the exemplar set within the Feature
Imitation branch. Finally, we describe the empirical limita-
tions about our approach.

2. Details of Feature Imitation Branch
This part we elucidate the detailed settings of training the

proposed Feature Imitation (FI) branch, including the policy
of producing augmentations for high-quality samples and
further discussions about non-high-quality samples, as well
as the details about constructing and updating the exemplar
feature set.
The Augmentation for High-quality Instances. In the
Training part of Sec. 3.2 of our main paper, we refer to
that the imitation process for a high-quality instance is per-
formed between the feature of itself and its transformed fea-
tures. In self-supervised contrastive learning paradigm, the
only single positive sample for an image is generated by the
transformation (e.g., AutoAugment [2], RandAugment [3]
and SimAugment [1]). Inspired by this setting, a function
Γ is employed in our FI head to augment the features for
high-quality instances who have an IQ ≥ Thq. Specifi-
cally, we use random translation and zoom-in/out operation
to augment the target features, and the corresponding func-
tions are defined as R(sw, sh) and Z(smin, smax), where sw
and sh represent the translation factors along the width-axis
and height-axis of the ground-truth box respectively, while
smin and smax indicate the minimum and maximum factors
during zoom-in/out operation. Finally, the overall transfor-
mation function Γ is formulated as:

Γ(x, y, w, h) = {R(x, y, w, h),Z(x, y, w, h)} , (1)

*Corresponding author: gcheng@nwpu.edu.cn

β1, β2, β3 AP APeS APrS APgS

Baseline 28.9 13.8 25.7 34.5
0.5, 0, 0 29.0 13.7 25.7 34.7

0.5, 0.1, 0.05 29.5 14.4 26.3 35.1
0.5, 0.2, 0.1 29.2 14.3 26.1 34.8

Table 1. The effect of different weights of non-high-quality in-
stances to the performance, where β1, β2 and β3 represent the loss
weights of low-quality, mid-quality, and high-quality instances, re-
spectively. ’Baseline’ denotes Faster RCNN [4].

where (x, y, w, h) determines the region of proposal. In
our practices, we use 8 pairs of (sw, sh) and 8 pairs of
(smin, smax) to obtain 16 positive samples for a high-quality
instance. The other transformations may bring better perfor-
mance while we leave the future work to explore the optimal
transformation functions, since the designed simple Γ could
fulfill the imitation learning procedure for high-quality in-
stances.
Discussions about Non-high-quality Instances. We use
IQ to indicate the quality of an instance and its competence
to be an exemplar by setting a threshold Thq (practically set
to 0.65), which implies that instances whose IQ scores are
below the predefined Thq are marked as low-quality. Is this
reasonable? Two instances with the scores of 0.64 and 0.14
will be regarded equally as low-quality samples and con-
duct the imitation, however our core idea of introducing IQ
is to mine the exemplars to guide the representation learning
of samples with uncertain predictions. In other words, these
two instances both will be marked as uncertain/ambiguous,
and this is not rigorous because the prediction (classifica-
tion scores and localization) of the former one (IQ = 0.64)
is actually not bad. Hence, to mitigate this issue, we ex-
perimentally involve a low-quality threshold Tlq to discover
those instances with high demand to be amended. Noting
the introduction of Tlq will not change the overall training
procedure depicted in Alg. 1 of our main paper, and the
only difference lies in that we highlight the feature leaning
of low-quality instances by assigning different loss weight



Figure 1. Four architectures for Feat2Embed module: (a) GAP-Embed, (b) Flatten-Embed, (c) Conv-Embed, and (d) SharedConv-Embed.

to instances with a quality score Tlq ≤ IQ < Thq (noted
as mid-quality instances) and that with IQ < Tlq (noted
as low-quality instances). Specifically, we conduct a se-
ries experiments to investigate the effect of such settings
to the overall performance. As in Table 1, it is interesting
that only focusing on the low-quality instances does not get
the best results, and we conjecture this originates that the
Feat2Embed module has not been optimized well with low-
quality instances only, especially at early stage. Meanwhile,
the undue concentration on those non-low-quality instances
also poses negative impact to the learning of Feature Imi-
tation branch. To sum up, the introduction of mid-quality
instances can be regarded as a buffer area that is beneficial
for stabilizing the training process and amending the repre-
sentations of low-quality instances.
Details about the Exemplar Feature Set. The exemplar
feature set is crucial in our method, and here we describe
some details about its construction and updating rules. We
empirically set the number of the samples for each ground-
truth instance as 128, with half positive samples and half
negative ones (except for high-quality instances). More-
over, the general rule of updating the exemplar set is re-
semble that of queue, namely first in first out. And the max-
imum size of the feature set for each category is 256 which
is double to that of the sampling number for each instance.
For the classes with limited high-quality ground truths, we
halve the size of exemplar feature set and positive number
to avoid that the feature set is unable to update for a long
time.
Choices for Feat2Embed Module. In the Feature Imita-
tion branch, we propose to measure the similarity between
different RoI features in the embedding space with the help
of the Feat2Embed module. Here, we explore the impact
of different Feat2Embed designs on the performance of
the FI branch. As demonstrated in Figure 1, we investi-
gate four pipelines to perform the embedding process: (a)
GAP-Embed, (b) Flatten-Embed, (c) Conv-Embed, and (d)
SharedConv-Embed. These four architectures consist of
two key components: dimensionality reduction and the em-
bedding function. The primary difference among them lies
in how they map the regional features to compact represen-
tations within the embedding space. We then utilize Faster
RCNN as the baseline detector and conduct experiments to
identify the optimal setting for the Feat2Embed module.

Feat2Embed AP APeS APrS APgS

Baseline 28.9 13.8 25.7 34.5
GAP-Embed 29.2 14.1 25.8 34.9

Flatten-Embed 29.4 14.4 26.1 35.2
Conv-Embed 29.5 14.2 26.3 35.2

SharedConv-Embed 29.5 14.4 26.3 35.1

Table 2. The effect of different Feat2Embed module designs to
the performance of Feature Imitation branch, in which the term
’Baseline’ denotes Faster RCNN [4].

Table 2 reveals that the proposed Feature Imitation
branch demonstrates robustness to most designs except for
GAP-Embed. We suspect that directly pooling the regional
feature into a single vector results in significant information
loss, thereby compromising the representation and similar-
ity computation in the embedding space. Given that the
number of parameters to be optimized in Flatten-Embed
is approximately 60 times that of SharedConv-Embed, and
the latter achieves a better average precision (APeS) perfor-
mance compared to Conv-Embed, we choose SharedConv-
Embed as our standard Feat2Embed module.
Empirical Limitations. Albeit facilitating the result of
baseline detector on small objects especially on size-limited
ones, the Feature Imitation branch may exhibit instability
in performance. Empirically, the final performance of our
feature imitation head significantly relies on the exemplars
which dominate the imitation learning. However, the ex-
emplar feature set constructed in each training procedure is
distinct due to the dynamic of optimization. In other words,
the exemplar features in current turn may fail to reach the
bar of a high-quality teacher feature in next turn, and vice
versa. Hence, a more flexible and general indicator of in-
stance quality greatly contributes to a more elegant and ef-
fective method, and we leave this issue open to further re-
search.

References
[1] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geof-

frey Hinton. A simple framework for contrastive learning of
visual representations. In International Cconference on Ma-
chine Learning, pages 1597–1607, 2020.

[2] Ekin D Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasude-
van, and Quoc V Le. Autoaugment: Learning augmentation
strategies from data. In Proceedings of the IEEE Cconference



on Computer Vision and Pattern Recognition, pages 113–123,
2019.

[3] Ekin D Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V Le.
Randaugment: Practical data augmentation with no separate
search. arXiv preprint arXiv:1909.13719, 2019.

[4] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.
Faster r-cnn: Towards real-time object detection with region
proposal networks. Advances in Neural Information Process-
ing Systems, 28, 2015.


