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1. Supplementary Material
1.1. State of the art comparison on CIFAR-C

In the main text, we provide detailed ablations on
CIFAR10/100-C in the form of corruption robustness evalu-
ation. Due to space limitations, we could not provide state-
of-the-art results there; we provide these results here. We
compare ourselves with methods which share our character-
istics; no additional data or models to be used. We choose
CutOut [4], Mixup [13], CutMix [12], adversarial training
(AT) [7], AutoAugment (AA) [3], Augmix [5] and APR [2].
We take the results of these methods from [2]; we do not
include CIFAR-100 clean accuracy results or ResNet18 re-
sults here since they are not available.
Corruption Robustness. Table 1 shows mCE values of
other methods, as well as the best results provided in Table 1

State-of-the-art methods Single-only Paired-only Combined APRP [2] with
Orig Cutout Mixup CutMix AT AugMix AA APRS HAS HA++

S APRP HAP HA++
P APRPS HAPS HA++

PS HAS HA++
S

AllConv 30.8 32.9 24.6 31.3 28.1 15.0 29.2 14.8 16.8 13.9 21.5 20.8 16.7 11.5 12.0 10.7 11.9 11.2
DenseNet 30.7 32.1 24.6 33.5 27.6 12.7 26.6 12.3 15.0 11.1 20.3 18.4 14.2 10.3 10.9 9.5 10.6 10.2
WResNet 26.9 26.8 22.3 27.1 26.2 11.2 23.9 10.6 13.6 10.0 18.3 16.4 13.2 9.1 9.9 8.3 9.2 8.7
ResNeXt 27.5 28.9 22.6 29.5 27.0 10.9 24.2 11.0 13.2 9.9 18.5 17.6 13.2 9.1 10.3 7.9 9.3 8.7
Mean 29.0 30.2 23.5 30.3 27.2 12.5 26.0 12.1 14.6 11.2 19.6 18.3 14.3 10.0 10.7 9.1 10.2 9.7
AllConv 56.4 56.8 53.4 56.0 56.0 42.7 55.1 39.8 43.0 38.9 47.5 44.7 41.7 35.9 36.5 34.4 35.9 35.1
DenseNet 59.3 59.6 55.4 59.2 55.2 39.6 53.9 38.3 41.3 37.3 49.8 45.6 41.8 35.8 36.1 33.4 36.3 35.0
WResNet 53.3 53.5 50.4 52.9 55.1 35.9 49.6 35.5 38.1 33.9 44.7 43.1 39.3 32.9 34.2 31.2 33.2 31.9
ResNeXt 53.4 54.6 51.4 54.1 54.4 34.9 51.3 33.7 35.6 31.1 44.2 41.2 36.4 31.0 31.5 28.8 31.2 29.9
Mean 55.6 56.1 52.6 55.5 55.2 38.3 52.5 36.8 39.5 35.3 46.5 43.6 39.8 33.9 34.5 31.9 34.1 33.0

Table 1. Corruption robustness on CIFAR-10 (first 6 rows) and CIFAR-100 with various CNNs. Values show mCE, lower is better. The
table is divided into groups for easy comparison; single-only augmentation, paired-only augmentation, combined augmentations, etc. Orig
refers to the standard model.

State-of-the-art methods Single-only Paired-only Combined APRP [2] with
Orig Cutout Mixup CutMix AT AugMix AA APRS HAS HA++

S APRP HAP HA++
P APRPS HAPS HA++

PS HAS HA++
S

AllConv 93.9 93.9 93.7 93.6 81.1 93.5 93.5 93.5 94.1 93.9 94.5 93.9 94.0 94.3 94.5 94.3 94.3 94.3
DenseNet 94.2 95.2 94.5 94.7 82.1 95.1 95.2 94.9 94.7 95.0 95.0 93.1 93.2 95.2 94.9 94.8 95.1 95.1
WResNet 94.8 95.6 95.1 95.4 82.9 95.1 95.2 95.0 95.3 95.4 95.2 93.2 92.0 95.7 95.0 95.3 95.4 95.8
ResNeXt 95.7 95.6 95.8 96.1 84.6 95.8 96.2 95.5 95.3 95.7 95.5 93.5 92.9 96.1 95.2 95.9 95.6 96.1
Mean 94.2 95.0 94.7 94.9 82.6 94.8 95.0 94.9 94.9 95.1 95.0 92.9 92.3 95.2 95.0 95.1 95.1 95.3
AllConv 74.9 - - - - - - 75.3 75.0 75.8 74.8 74.08 74.7 75.2 75.8 75.2 75.7 75.1
DenseNet 71.4 - - - - - - 75.8 76.0 75.6 71.5 71.4 71.7 75.6 74.9 75.9 76.1 76.1
WResNet 72.1 - - - - - - 76.2 76.8 76.2 70.4 71.3 71.7 76.8 74.8 76.0 77.2 76.5
ResNeXt 75.0 - - - - - - 78.8 79.4 79.4 71.1 73.5 74.3 79.1 77.3 78.8 79.9 79.3
Mean 72.9 - - - - - - 76.6 76.9 76.8 70.3 71.1 70.8 76.5 75.6 76.4 77.1 76.6

Table 2. Clean accuracy values on CIFAR-10 (first 6 rows) and CIFAR-100. Higher the better. The table is divided into groups for easy
comparison; single-only augmentation, paired-only augmentation, combined augmentations, etc.Orig refers to the standard model.

of the main text. The inclusion of the state-of-the-art meth-
ods do not change the takeaway message; HA++

PS comfort-
ably outperforms others on all datasets and architectures.
Note that all variants of HA and HA++ either outperform
or are competitive to all state-of-the-art methods.
Clean Accuracy. Table 1 shows clean accuracy values of
other methods, as well as the best results provided in Table
2 of the main text. HA++

PS outperforms all other state-of-
the-art methods, and the best CIFAR-10 result comes with
APRP +HA++

S . Note that the best result on CIFAR-100
comes with APRP +HAS , which shows the effectiveness
of our proposed methods.



1.2. More on HA and HA++

We provide the pseudo-code of HA++
P and HAP in Al-

gorithm 1. Also provided is the pseudo-code for HA++
S

and HAS in Algorithm 2. Our code and pretrained models
will be made publicly available.

Note that in Algorithm 2, we decompose into low and
high frequency bands both augmented images (lines 22-23
and 25-26), and also amplitude-phase swap low-frequency
bands (lfc_f and lfc_s) of both augmented images
(lines 42 and 56). We then randomize the selection of which
low/high frequency components will come from which im-
age for the final result (lines 58 to 63). Figure 1 of the main
text shows a simplified version of this, where only the ex-
ecution of line 61 is shown. In practice, we use the imple-
mentation provided in Algorithm 2.

1.3. Detailed results - transformer

We provide the detailed results of our corruption robust-
ness experiments with Swin-Tiny [6]. The result in Table
1.3 shows that HA++

PS consistently improves on all types of
corruptions, regardless of their frequency characteristics.

1 def hybrid_augment_paired(x_batch, prob, blur_fnc
, is_ha_plus):

2 #x_batch: batch of training images
3 #prob: probability value [0,1]
4 #blur_fnc: blurring function
5 #is_ha_plus: True for HA++, false for HA
6 #fft: fourier transform
7 #ifft: inverse fourier transform
8
9 p = random.uniform(0,1)

10 if p > prob:
11 return x
12
13 batch_size = x_batch.size()[0]
14 index = torch.randperm(batch_size)
15
16 lfc = blur_fnc(x_batch)
17 hfc = x - lfc
18 hfc_mix = hfc[index]
19
20 if is_ha_plus:
21 #Based on the APR method.
22 p = random.uniform(0,1)
23 if p > 0.6:
24 lfc = lfc
25 else:
26 index_p = torch.randperm(batch_size)
27 phase1, amp1 = fft(lfc)
28 lfc_mix = lfc[index_p]
29 phase2, amp2 = fft(lfc_mix)
30 lfc = ifft(phase1, amp2)
31
32 hybrid_ims = lfc + hfc_mix
33 return hybrid_ims

Listing 1. PyTorch-style pseudocode for HAP and HA++
P .

1 def hybrid_augment_single(x, prob, blur_fnc,
sample_augs, is_ha_plus):

2 #x: a single training image
3 #prob: probability value [0,1]
4 #blur_fnc: blurring function
5 #sample_augs: randomly sample augmentations
6 #is_ha_plus: True for HA++, false for HA
7 #fft, ifft: fourier and inverse fourier

transform
8
9 p = random.uniform(0,1)

10 if p > prob:
11 return x
12
13 #First augmented view.
14 ops1 = sample_augs()
15 x_aug1 = ops1(x)
16
17 #Second augmented view.
18 ops2 = sample_augs()
19 x_aug2 = ops2(x)
20
21 lfc_f = blur_fnc(x_aug1)
22 hfc_f = x_aug1 - lfc_f
23
24 lfc_s = blur_fnc(x_aug2)
25 hfc_s = x_aug2 - lfc_s
26
27 if is_ha_plus:
28 #For lfc_f.
29 p = random.uniform(0, 1)
30 if p > 0.6:
31 lfc_f = lfc_f
32 else:
33 ops3 = sample_augs()
34 lfc_aug = ops3(lfc_f)
35 ops4 = sample_augs()
36 lfc_aug_2 = ops4(lfc_f)
37
38 phase1, amp1 = fft(lfc_aug)
39 phase2, amp2 = fft(lfc_aug_2)
40 lfc_f = ifft(phase1, amp2)
41
42 #For lfc_s.
43 p = random.uniform(0, 1)
44 if p > 0.6:
45 lfc_s = lfc_s
46 else:
47 ops5 = sample_augs()
48 lfc_aug = ops5(lfc_s)
49 ops6 = sample_augs()
50 lfc_aug_2 = ops6(lfc_s)
51
52 phase1, amp1 = fft(lfc_aug)
53 phase2, amp2 = fft(lfc_aug_2)
54 lfc_s = ifft(phase1, amp2)
55
56 p = random.uniform(0, 1)
57
58 if p > self.prob:
59 hybrid_im = lfc_f + hfc_s
60 else:
61 hybrid_im = lfc_s + hfc_f
62
63 return hybrid_im

Code 2. PyTorch-style pseudocode for HAS and HA++
S .



Noise Blur Weather Digital
Method Test Error Gauss Shot Impulse Defocus Glass Motion Zoom Snow Frost Fog Brightness Contrast Elastic Pixel JPEG mCE
Standard 18.8 52 54 53 68 81 65 72 57 52 47 48 45 74 61 63 59.5
HA++

PS 19.4 44 48 42 63 78 59 71 49 48 46 46 39 71 60 59 54.8
Table 3. Swin-Tiny Clean error and corruption robustness (mCE) on ImageNet. Lower is better.

1.4. Related work continued

The robustness literature is vast, and it is difficult to
cover all methods, therefore in the main text we opted to
cover and compare ours against the most relevant ones (i.e.
frequency-centric augmentations). Here, we discuss addi-
tional, more recent methods.

We focus on recent methods, such as [1, 11, 9, 8].
[1] uses an extra model to generate new training samples,
which makes the method significantly more complex than
ours. Despite this added complexity, we outperform it on
ImageNet-C without extra data (75.03 vs 65.8 mCE) and
with extra data (62.9 vs 58.9 mCE), even though they use
additional augmentations (i.e. AugMix). [11] extends Aug-
Mix by making parts of the cascade augmentation pipeline
learnable. We outperform it on CIFAR-10/100-C on all ar-
chitectures. Note that we could not compare against them
on ImageNet-C as they use a different architecture (i.e.
ResNet18). [9] outperforms us on ImageNet, but it uses
model ensembles during training, which are finetuned on
some of the test-time corruptions of ImageNet-C (i.e. noise
and blur finetuning for high-frequency model, contrast fine-
tuning for low-frequency model). We believe this violates
the assumption of not using test-time corruptions in train-
ing. PRIME [8] mixes several max-entropy transforms to
augment the training distribution. We outperform it on
CIFAR-10/100, are competitive on ImageNet-C̄ but behind
on ImageNet-C. Despite its results, PRIME has three key
disadvantages compared to our method; it i) requires per-
dataset hyperparameter tuning for its transforms, ii) man-
ual tuning of these parameters are required to preserve se-
mantics after augmentation and iii) shows that their aug-
mented images look similar to test-time corruptions, which
might be (inadvertently) violating the assumption of not us-
ing test-time corruptions in training.

1.5. Adversarial robustness on ImageNet

We evaluate ResNet-50 models trained with HA++
PS ,

APRPS and standard training. We use the model check-
points shown in Table 3 (main text); we do not train new
models. Table 4 shows HA++

PS improves robust and clean
accuracy (RA, CA) on ImageNet, and comfortably outper-
forms our baseline. Note that we use a smaller ϵ = 1/255
value, as higher epsilon evaluation would require adversar-
ial (re)training.

Orig. APRPS HA++
PS

CA 76.10 75.60 76.30
RA 51.02 54.22 56.44

Table 4. AutoAttack results.

1.6. Transfer learning performance

As reported in [10], robust models tend to transfer bet-
ter to downstream tasks. In the same vein, we perform
a wide range of finetuning experiments, where a standard
ResNet50 and HA++

PS -trained ResNet50 are finetuned on
various datasets by changing the final layer. Note that we do
not train new models; we use the model checkpoints shown
in Table 3 (main text). Table 5 shows we comfortably out-
perform standard training on majority of other classification
tasks. This shows the transferability of the features learned
by our augmentation schemes.
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