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A. Training Details for the NYU v2 dataset
A.1. Network Architecture

We employed ResNet50 [7] with dilated convolutions [1]
as backbone. Dilated convolutions were applied for stages
3 and 4 to replace with stride convolutions to keep the fea-
ture size. As a result, the feature size of backbone output
enlarges from 15 x 20 to 60 x 80. We performed predic-
tion using the DeepLabV3 [2] predictor on the output fea-
tures. Due to the significant computational burden of the
ASPP (atrous spatial pyramid pooling) module in DeepLab,
we designed our architecture so that all tasks share a single
ASPP, rather than each task having its own ASPP as in pre-
vious approaches [9, 8, 16]. The numbers of GMAC (Giga
Multiply-Accumulate Operations) for different single-task
and multi-task models are described in Table A. Our multi-
task models reduced the number of computations to 33.00%
by sharing ASPP, whereas the multi-task models with indi-
vidual ASPP for each task reduced to 60.58% (Table B).

ResNet50 ASPP Prediction Total
segmentation 116.800 72.038 2.880 191.718

depth estimation 116.800 72.038 2.832 191.670
surface normal 116.800 72.038 2.834 191.672

multi-task 116.800 72.038 8.536 197.385

Table A. GMAC comparison for single-task and multi-task models

A.2. Training configurations

We trained single-task and multi-task models for 100
epochs with a batch size of 8. We adopted an ADAM opti-
mizer with a momentum of 0.9 and a weight decay of 5e-4.
We tried 10 times for each of the learning rates of 8e-4, 4e-
4, 2e-4, 1e-4, and 8e-5, scheduled by cosine decay without
warmup. We selected the multi-task model with the best
AccMTL of each trial and computed their average accuracy
metrics for each learning rate, excluding the maximum and
minimum accuracy (hence, the average of eight).

*Corresponding author

B. Experimental Results for the NYU dataset
B.1. Detailed Results for Various Prediction Heads

In this subsection, we will demonstrate the detailed re-
sults for various prediction heads, depicted in Table 2,
which were shared DeepLabV3, shared DeepLabV3+, in-
dividual DeepLabV3, and individual DeepLabV3+. The
numbers of GMAC for the architectures were shown in Ta-
ble B. The results of DeepLabV3 with shared ASPP were
presented in Table 1. Then, we provided the results for
DeepLabV3+ with shared ASPP (Table C), and individual
ASPP with DeepLabV3 (Table D) and DeepLabV3+ (Table
E).

ASPP Head ResNet50 ASPP Prediction Total

Shared DeepLabV3 [2] 116.80 72.04 8.54 197.39

DeepLabV3+ [3] 116.80 72.04 17.67 206.51

Individual DeepLabV3 [2] 116.80 216.11 8.54 341.46

DeepLabV3+ [3] 116.80 216.11 18.93 351.84

Table B. GMAC comparison for different network architectures

B.2. Results for the MobileNetV2 Backbone

The detailed results for the MobileNetV2 [12] backbone
were described in Table F. Because the output feature size
of the MobileNet backbone was significantly reduced by 32,
we employed the shared DeepLabV3+ prediction head to
exploit high resolution features.

B.3. Results for the EfficientNetV2 Backbone

The detailed results for the EfficientNetV2-S [12] back-
bone were described in Table G. Like MobileNetV2, the
output feature size was reduced by 32, so the DeepLabV3+
prediction head was employed.

B.4. Segmentation and Depth Estimation

The experimental results for two tasks, semantic seg-
mentation and depth estimation, were described in Table H.
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segmentation depth estimation surface normal total

methods mIoU ↑ δ1 ↑ rmse ↓ mean ↓ median ↓ 11.25 ↑ AccMTL ↑ ∆MTL ↑ time

Single-Task 0.4449 0.8054 0.5801 19.4138 13.2616 0.4536 0.3986 0.00%

Constant Uniform 0.4447 0.8098 0.5756 22.7259 17.4917 0.3377 0.3683 -8.07% 30.98

Scale
-based

RLW [8] 0.4436 0.8084 0.5765 22.8454 17.6649 0.3326 0.3665 -8.55% 31.55

DWA [11] 0.4429 0.8108 0.5760 22.7235 17.5215 0.3369 0.3677 -8.25% 30.77

GLS [5] 0.4313 0.8238 0.5606 20.8125 15.1440 0.3954 0.3835 -3.88% 31.27

Gradient
-based

MGDA [13] 0.2896 0.7670 0.6231 19.2335 13.1608 0.4562 0.3394 -13.41% 76.78

PCGrad [17] 0.4439 0.8019 0.5841 23.9044 18.8431 0.3097 0.3581 -11.04% 58.02

CAGrad [9] 0.4440 0.8021 0.5824 23.9114 18.8163 0.3103 0.3584 -10.94% 58.99

GradNorm [4] 0.4429 0.7850 0.5972 22.3589 16.8694 0.3542 0.3677 -8.21% 36.19

IMTL-G [10] 0.4346 0.8039 0.5799 20.5369 14.7189 0.4082 0.3838 -3.78% 35.33

IMTL [10] 0.4200 0.7897 0.5935 20.9657 14.9806 0.4017 0.3746 -6.18% 57.85

Accuracy
-based

DTP [6] 0.4422 0.7513 0.6225 22.4029 16.8250 0.3557 0.3625 -9.63% 31.46

AMTL 0.4344 0.8211 0.5670 20.8688 15.1885 0.3943 0.3831 -3.98% 30.65

Table C. Comparison to the benchmark and proposed multi-task losses for the DeepLabV3+ prediction head with shared ASPP on the
NYU v2 dataset. mIoU , δ1, 11.25, AccMTL, and ∆MTL are better when higher while rmse, mean, and median are better when lower.
time denotes the average training time for epoch in seconds.

segmentation depth estimation surface normal total

methods mIoU ↑ δ1 ↑ rmse ↓ mean ↓ median ↓ 11.25 ↑ AccMTL ↑ ∆MTL ↑ time

Single-Task 0.4437 0.8087 0.5814 19.3462 13.2045 0.4553 0.3989 -

Constant Uniform 0.4443 0.8150 0.5766 22.3212 16.3137 0.3738 0.3763 -6.00% 43.31

Scale
-based

RLW [8] 0.4471 0.8130 0.5725 22.3235 16.3094 0.3741 0.3774 -5.71% 43.22

DWA [11] 0.4466 0.8141 0.5730 22.3439 16.3962 0.3721 0.3768 -5.87% 43.01

GLS [5] 0.4397 0.8220 0.5681 20.5555 14.5141 0.4156 0.3895 -2.41% 43.28

Gradient
-based

MGDA [13] 0.3863 0.8008 0.5840 19.6941 13.5648 0.4437 0.3770 -5.34% 88.97

PCGrad [17] 0.4468 0.8111 0.5763 23.4195 17.4143 0.3532 0.3697 -7.95% 63.91

CAGrad [9] 0.4467 0.8106 0.5793 23.4502 17.4594 0.3513 0.3689 -8.15% 63.01

GradNorm [4] 0.4455 0.8167 0.5715 22.3188 16.3126 0.3734 0.3773 -5.74% 57.90

IMTL-G [10] 0.4268 0.8199 0.5665 19.8490 13.7477 0.4377 0.3917 -1.79% 57.89

IMTL [10] 0.4218 0.8074 0.5783 20.6877 14.5346 0.4161 0.3815 -4.43% 99.27

Accuracy
-based

DTP [6] 0.4436 0.7958 0.5951 22.1462 16.1081 0.3773 0.3739 -6.63% 43.43

AMTL 0.4414 0.8207 0.5674 20.5774 14.5073 0.4160 0.3899 -2.29% 44.08

Table D. Comparison to the benchmark and proposed multi-task losses for the DeepLabV3 prediction head with individual ASPP on the
NYU v2 dataset.



segmentation depth estimation surface normal total

methods mIoU ↑ δ1 ↑ rmse ↓ mean ↓ median ↓ 11.25 ↑ AccMTL ↑ ∆MTL ↑ time

Single-Task 0.4449 0.8054 0.5801 19.4138 13.2616 0.4536 0.3986 -

Constant Uniform 0.4437 0.8142 0.5726 22.2965 16.3707 0.3716 0.3762 -5.96% 45.61

Scale
-based

RLW [8] 0.4457 0.8132 0.5769 22.2547 16.3355 0.3723 0.3764 -5.88% 43.37

DWA [11] 0.4445 0.8140 0.5757 22.2624 16.3621 0.3715 0.3761 -5.97% 43.83

GLS [5] 0.4386 0.8211 0.5657 20.6328 14.6300 0.4128 0.3885 -2.58% 44.12

Gradient
-based

MGDA [13] 0.3950 0.8022 0.5833 19.7439 13.6664 0.4406 0.3793 -4.75% 90.15

PCGrad [17] 0.4454 0.8114 0.5768 23.0143 17.1312 0.3562 0.3710 -7.44% 64.25

CAGrad [9] 0.4467 0.8104 0.5789 23.0637 17.1736 0.3552 0.3708 -7.51% 63.75

GradNorm [4] 0.4458 0.8136 0.5767 22.3320 16.4119 0.3705 0.3760 -6.02% 59.13

IMTL-G [10] 0.4396 0.8161 0.5680 20.3185 14.2563 0.4230 0.3910 -1.93% 58.67

IMTL [10] 0.4240 0.8055 0.5837 20.7662 14.6261 0.4134 0.3807 -4.57% 103.50

Accuracy
-based

DTP [6] 0.4463 0.8012 0.5874 22.2058 16.2499 0.3743 0.3751 -6.24% 43.10

AMTL 0.4251 0.8249 0.5636 20.2782 14.1928 0.4247 0.3883 -2.59% 43.39

Table E. Comparison to the benchmark and proposed multi-task losses for the DeepLabV3+ prediction head with individual ASPP on the
NYU v2 dataset.

segmentation depth estimation surface normal total

methods mIoU ↑ δ1 ↑ rmse ↓ mean ↓ median ↓ 11.25 ↑ AccMTL ↑ ∆MTL ↑ time

Single-Task 0.3798 0.7685 0.6323 21.2734 14.8062 0.4151 0.3581 -

Constant Uniform 0.3850 0.7761 0.6180 25.0320 19.8745 0.2976 0.3313 -7.91% 16.04

Scale
-based

RLW [8] 0.3825 0.7706 0.6235 25.2629 20.1929 0.2914 0.3280 -8.92% 19.14

DWA [11] 0.3836 0.7767 0.6185 24.9665 19.8221 0.2982 0.3311 -7.94% 19.08

GLS [5] 0.3662 0.7930 0.6048 22.4388 16.6333 0.3633 0.3464 -3.30% 17.26

Gradient
-based

MGDA [13] 0.2578 0.7307 0.6646 20.8591 14.6106 0.4183 0.3109 -11.93% 32.31

PCGrad [17] 0.3855 0.7653 0.6284 26.5895 21.7927 0.2674 0.3204 -11.44% 23.71

CAGrad [9] 0.3843 0.7670 0.6270 26.5724 21.8092 0.2670 0.3202 -11.48% 23.61

GradNorm [4] 0.3841 0.7570 0.6339 24.1916 18.6917 0.3213 0.3346 -6.87% 20.96

IMTL-G [10] 0.3646 0.7763 0.6181 21.5271 15.3898 0.3958 0.3513 -1.88% 21.04

IMTL [10] 0.3619 0.7658 0.6298 22.0750 16.0011 0.3802 0.3445 -3.82% 35.06

Accuracy
-based

DTP [6] 0.3844 0.7310 0.6566 24.5180 19.0092 0.3150 0.3289 -8.58% 16.04

AMTL 0.3696 0.7927 0.6070 22.3961 16.5574 0.3651 0.3476 -2.95% 16.25

Table F. Comparison to recent multi-task losses for the MobileNetv2 backbone and shared DeepLabV3+ prediction head on the NYU v2
dataset.



segmentation depth estimation surface normal total

methods mIoU ↑ δ1 ↑ rmse ↓ mean ↓ median ↓ 11.25 ↑ AccMTL ↑ ∆MTL ↑ time

Single-Task 0.4622 0.8300 0.5540 21.3341 16.0052 0.3730 0.3877 -

Constant Uniform 0.4861 0.8335 0.5500 22.3076 17.1379 0.3458 0.3868 -0.20% 23.67

Scale
-based

RLW [8] 0.4839 0.8284 0.5535 22.6282 17.4877 0.3377 0.3830 -1.20% 24.24

DWA [11] 0.4856 0.8327 0.5479 22.2851 17.1112 0.3462 0.3870 -0.14% 24.29

GLS [5] 0.4607 0.8427 0.5418 20.6434 15.1945 0.3942 0.3958 2.06% 24.65

Gradient
-based

MGDA [13] 0.2915 0.7195 0.6470 20.0508 14.3504 0.4211 0.3268 -14.08% 58.70

PCGrad [17] 0.4865 0.8238 0.5554 23.7069 18.8369 0.3094 0.3743 -3.51% 40.83

CAGrad [9] 0.4881 0.8226 0.5580 23.7155 18.8571 0.3094 0.3742 -3.52% 42.19

GradNorm [4] 0.4889 0.8091 0.5639 21.9632 16.6797 0.3573 0.3873 -0.06% 31.59

IMTL-G [10] 0.4710 0.8113 0.5639 20.1275 14.4924 0.4155 0.3991 2.90% 29.22

IMTL [10] 0.4725 0.8019 0.5699 20.6113 15.0365 0.3995 0.3936 1.54% 43.88

Accuracy
-based

DTP [6] 0.4876 0.7733 0.5911 21.6803 16.2800 0.3672 0.3837 -0.97% 24.36

AMTL 0.4710 0.8426 0.5396 20.6636 15.2123 0.3941 0.3989 2.85% 24.40

Table G. Comparison to recent multi-task losses for the EfficientNetV2-S backbone and the DeepLabV3+ prediction head with shared
ASPP on the NYU v2 dataset.

segmentation depth estimation total

methods mIoU ↑ δ1 ↑ rmse ↓ AccMTL ↑ ∆MTL ↑ time

Single-Task 0.4437 0.8087 0.5814 0.7234 0.00% -

Constant Uniform 0.4464 0.7994 0.5809 0.7236 0.03% 29.49

Scale
-based

RLW [8] 0.4458 0.7996 0.5816 0.7230 -0.06% 33.30

DWA [11] 0.4484 0.7995 0.5853 0.7239 0.08% 29.29

GLS [5] 0.4397 0.8091 0.5755 0.7221 -0.19% 29.01

Gradient
-based

MGDA [13] 0.4439 0.8098 0.5770 0.7252 0.25% 58.78

PCGrad [17] 0.4429 0.7936 0.5903 0.7166 -0.94% 43.40

CAGrad [9] 0.4441 0.7925 0.5944 0.7161 -1.02% 43.05

GradNorm [4] 0.4477 0.7806 0.6013 0.7142 -1.28% 32.65

IMTL-G [10] 0.4414 0.8021 0.5810 0.7201 -0.46% 33.12

IMTL [10] 0.4323 0.7832 0.5976 0.7035 -2.78% 53.60

Accuracy
-based

DTP [6] 0.4452 0.7590 0.6124 0.7040 -2.70% 29.69

AMTL 0.4439 0.8083 0.5771 0.7248 0.20% 29.97

Table H. Comparison to recent multi-task losses for semantic segmentation and depth estimation on the NYU v2 dataset.



B.5. Effect of Dropout for Gradient-based Multi-
task Losses

Following TorchVision’s implementation, our ASPP in-
corporated dropout with a rate of 0.5. Dropout is an ef-
fective regularization technique. However, unfortunately, it
perturbs the gradients of trainable parameters, thereby af-
fecting gradient-based multi-task losses. We compared the
multi-task accuracy of gradient-based multi-task losses and
the proposed one, both with and without dropout (Table I).

Due to employing task gradients of all the parameters in
an iterative optimization process to determine task weights,
MGDA [13] demonstrated the most notable improvement
in accuracy upon excluding dropout. PCGrad [17] and CA-
Grad [9] also utilize all gradients to resolve conflict (but
they use only once), leading to significant improvement. In
contrast, as GradNorm [4] and IMTL-G [10] use only the
task gradients of the last shared layer, their accuracy im-
provements were more modest. The proposed loss provided
a slight increase in accuracy.

methods w/ dropout w/o dropout Improv.

MGDA [13] 0.3229 0.3576 10.75%

PCGrad [17] 0.3558 0.3664 2.98%

CAGrad [9] 0.3556 0.3663 3.01%

GradNorm [4] 0.3690 0.3708 0.49%

IMTL-G [10] 0.3846 0.3876 0.78%

AMTL 0.3847 0.3861 0.36%

Table I. Comparison of AccMTL to the gradient-based and pro-
posed multi-task losses on the NYU v2 dataset.

C. Training Details for the VOC+NYU dataset
C.1. Preprocessing

Images by the PASCAL VOC dataset were resized to
640x640 while images by the NYU datasets were 480x640.
Hence, we applied zero padding to expand NYU images
without geometric distortion. Then, geometric and photo-
metric augmentations were conducted.

C.2. Network Architecture

We employed EfficientDet [15] as the baseline architec-
ture and EfficientNetV2-S [14] as the backbone. We ex-
tracted 3-level features from the backbone, with sizes of
1/16, 1/32, and 1/64. The extracted features passed through
a two-stage bi-directional Feature Pyramid Network (bi-
FPN) [15] with a channel size of 64 before being supplied
to the task-specific prediction heads. The prediction heads
were composed of two inverted residual blocks [12] with

a channel size of 64. The detection head generated pre-
dictions using multi-level features, while pixel-level predic-
tions (segmentation and depth) were made by resizing the
features to the largest size (1/16) and concatenating them
before making predictions.

C.3. Training configurations

We trained single-task and multi-task models for 200
epochs with a batch size of 32. We adopted an ADAMW
optimizer with a momentum of 0.9 and a weight decay of
5e-6. The learning rate was warmed up during two epochs
and scheduled by ReduceOnPleatue so that it was reduced
by 1/10 whenever AccMTL was not improved during 20
epochs. We used learning rates of 4e-4, 2e-4, 1e-4, 8e-
5, and 4e-5. Then, we presented the results with the best
AccMTL in Table 7.
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