
[Appendix] Dense 2D-3D Indoor Prediction with Sound via Aligned Cross-Modal
Distillation

A. Implementation Details
We use a 96×257 binaural audio spectrogram as an input

for the student model, where we apply a short-time Fourier
transform with a signal length of 512, hop length of 12, and
window length of 40. We use Adam optimizer [1] with the
learning rate of 0.0001 and polynomial scheduling of 0.9
for 60 epochs.

A.1. Depth Estimation

Following Jiang et al. [2], we clip the output values to
[0.01, 10]. For the teacher model, we employ 192 × 384
panoramic images as input and apply random rotation (i.e.,
roll along the horizontal axis) for data augmentation. Ran-
dom audio channel flipping is also used as a data augmenta-
tion method during the student model training, correspond-
ing to a horizontal image flip.

A.2. Semantic Segmentation

We use the same configuration as in the depth estima-
tion task for input resolution and data augmentation. Instead
of 40 labels in the Matterport3D [3], we employ nine cate-
gories for segmentation: wall, floor, chair, door, table, win-
dow, bed, ceiling, and column. We merge other classes that
have similar semantics with the selected nine categories,
e.g., picture→wall, sofa→chair, etc. The remaining cate-
gories are grouped into one miscellaneous category, which
is not taken into consideration during training. Pixels clas-
sified as miscellaneous constitute 4.65% of all pixels in the
training split. Since we utilize annotations from 3D meshes,
we filter out noisy observations within the nine categories,
discarding categories with less than 1% of all pixels for each
image.

A.3. 3D Scene Reconstruction

Using a 163 voxel grid input, the teacher model predicts
a 323 voxel grid. Each grid cell in the 323 voxel output has a
value of 0 or 1, indicating whether the space is occupied or
not. We compute the loss using pseudo-ground truth voxels
and binary cross-entropy loss function, which helps bring
the model close to the desired occupancy grid output. For
evaluation, we employ the marching cubes algorithm [4] to

MAE↓ RMSE↓ δ1↑

d
≤

1

Pseudo-GT (Lp) [5] 0.9539 1.6187 0.6378
+ Rank [6] 0.9576 1.6184 0.6367
+ SAM3,4 0.9193 1.5773 0.6659

d
≤

2

Pseudo-GT (Lp) [5] 0.9905 1.6502 0.6274
+ Rank [6] 0.9962 1.6567 0.6241
+ SAM3,4 0.9860 1.6477 0.6474

d
≤

3
Pseudo-GT (Lp) [5] 1.0226 1.6866 0.6179
+ Rank [6] 1.0241 1.6870 0.6161
+ SAM3,4 1.0337 1.6838 0.6248

d
≤

4

Pseudo-GT (Lp) [5] 1.0668 1.7338 0.6020
+ Rank [6] 1.0638 1.7276 0.6034
+ SAM3,4 1.0473 1.7013 0.6174

Table 6: Comparison of non-identical emitter-receiver pairs
on DAPS-Depth test split.

produce a mesh from the voxel grid. Except for IoU, we
calculate normal completeness, Chamfer distance, and F1
score using the generated mesh.

A.4. Computation Environment

1. GPU: NVIDIA RTX A6000

2. CPU: Intel(R) Xeon(R) Gold 6130 CPU

3. OS: Ubuntu 18.04 LTS

4. RAM: SAMSUNG DDR4 8G

5. Relevant software libraries: Anaconda distribution of
python (3.7) and PyTorch (1.12)

Please refer to our source code for more details.

B. Additional Analysis
B.1. Influence of Auditory Observations

Table 6 reports the performance of different cross-modal
distillation methods on DAPS-Depth test split under non-
identical emitter-receiver pairs for audio inputs. To analyze
the robustness against sound sources from varying loca-
tions, we include all pairs whose distance between an emit-
ter and a receiver is up to four meters (d ≤ 4). Since the
appearance of the spectrogram may significantly vary with
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Figure 5: Influence of teacher model pre-training for audio-based depth-estimation on Replica. Higher is better.
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Figure 6: Influence of feature loss on DAPS-3D test split.

respect to the location of sound sources, the performance
decays as the distance becomes greater. Still, our method
displays superior performance for most of the configura-
tions.

B.2. Influence of Learnable Spatial Embeddings

Table 7 reports the performance of our distillation frame-
work with respect to the number of learnable spatial embed-
dings (K). To better analyze the influence of embeddings,
we exclude the multi-head attention from the SAM block
using U-Net as a backbone, i.e., U-Net+SAMSpatialEmbeddings.
In general, more spatial embeddings employed throughout
the spatial alignment via matching process implies better
performance, where we select K = 64 by reflecting both
performance and memory. A notable performance degrada-
tion in K = 1 indicates that it is not sufficient to leverage
a single spatial embedding per position to reconstruct dense
output.

K MAE↓ RMSE↓ δ1↑ δ2↑ δ3↑
1 1.3337 1.9798 0.4824 0.6656 0.7772
4 0.8760 1.5560 0.6839 0.8310 0.8949
16 0.8756 1.5450 0.6782 0.8311 0.8974
64 0.8739 1.5378 0.6738 0.8313 0.9000
256 0.8700 1.5367 0.6780 0.8306 0.8975

Table 7: Influence of the number of learnable spatial em-
beddings K on DAPS-Depth test split.

B.3. Influence of Cross-Dataset Transfer

Fig. 5 compares the performance of various methods on
Replica [7] using different pre-trained teacher models. We
follow Chen et al. [8] for the train, validation, and test
split of Replica. We use three distinct pre-trained teacher
models: the model trained on Replica, Matterport3D, and
MIX6 [9], respectively. For the teacher model trained on
MIX6, a large-scale dataset for depth estimation on a nor-
mal field-of-view image, we leverage pre-trained weight
from Ranftl et al. [10] and fine-tune the last three convo-
lutional layers with Replica to adjust the mean and variance
of the prediction.

The error rates of different teacher models are similar to
each other, i.e., MAE of 0.2134, 0.2040, and 0.2144, re-
spectively. The performance of Replica-trained teacher rel-
atively falls short due to the small scale of the dataset, while
MIX6-trained teacher mildly suffers from the domain gap
between the datasets. In varying teacher models for cross-
modal distillation, our approach consistently improves the
relative performance regardless of the training dataset of
teacher models. Fig. 10 visualizes the audio-based depth
estimation results of our approach on Replica.

B.4. Extension of 3D Scene Reconstruction

We further demonstrate the effectiveness of our approach
in non-iid settings for audio-based 3D scene reconstruction.



To be specific, we distill the knowledge from the teacher
model trained on DAPS-3D (i.e., Matterport3D) for Replica
test split mentioned in Sec. B.3. Table 8 reports the recon-
struction performance on Replica, where our method out-
performs prior arts in all four metrics as in the iid setting
(i.e., Table 4).

Fig. 12 displays the qualitative results of audio-based 3D
scene reconstruction on Replica test split. Due to the do-
main gap between the datasets, it is relatively more chal-
lenging to make precise predictions on Replica. Nonethe-
less, our approach, in general, is capable of identifying the
size and structure of a surrounding scene. Additionally, it
can recognize and generate the shape of objects, providing
a subtle indication of their presence in the final output.

B.5. Influence of Feature Loss

Fig. 6 illustrates the model’s performance with varying
feature loss implementations using ConvONet+SAM3,4 as a
backbone. Our loose triplet-based learning objective sig-
nificantly contributes to the performance, increasing IoU
by 16% and F1 by 13%, respectively. On the other hand,
forcefully matching the two heterogeneous feature maps by
minimizing MSE has minimal impact on the performance.
When training with our feature loss, using all the other fea-
tures in ai as negative samples (NegAll) is better than ran-
domly choosing one of the neighboring features as a nega-
tive sample (NegOne).

B.6. More Qualitative Examples

Fig. 9 illustrates additional qualitative examples of
audio-based semantic segmentation on DAPS-Semantic test
split. Our method precisely predicts the room’s layout while
discerning semantic objects like a table with chairs or a
doorframe. Fig. 11 visualizes more qualitative examples
of audio-based 3D scene reconstruction on DAPS-3D test
split.

B.7. Analysis on Real-world Audio Sample

To investigate the performance of our framework with
real-world audio-based dense prediction, we apply our pro-
posed framework to BatVision data [11] that addresses
depth estimation in a restricted field of view. We observe
that our approach can also be effective in real-world in-
door/outdoor scenarios, as visualized in Fig. 7.

B.8. Analysis on limitation

To better understand the limitations of our approach, we
categorize the failure modes in each task, as exemplified
in Fig. 8. We analyze that there are two major causes be-
hind inaccurate prediction: sophisticated furnishings and
ambiguous layouts. For example, the first row of Fig. 8 in-
volves a corridor filled with a variety of furniture and doors,
making it hard to capture the surface of the room accurately.

Image Teacher Ours

Figure 7: Qualitative examples on real-world samples.

Scene Teacher Ours

Figure 8: Failure mode analysis.

IoU↑ Chamfer↓ NC↑ F1↑
Teacher [12] 0.548 0.0137 0.882 0.560
Audio-onlyMono 0.123 0.0607 0.608 0.160
Audio-onlyStereo 0.133 0.0571 0.623 0.161

[12]

MSE 0.124 0.0587 0.620 0.161
Rank [6] 0.127 0.0582 0.624 0.163
MTA [13] 0.128 0.0573 0.623 0.162U

-N
et[14]

MSE 0.140 0.0573 0.649 0.166
Rank [6] 0.137 0.0597 0.640 0.172
MTA [13] 0.152 0.0577 0.650 0.173
SAMFull 0.177 0.0535 0.671 0.180

V
iT

[10]

MSE 0.142 0.0573 0.619 0.172
Rank [6] 0.149 0.0564 0.629 0.171
MTA [13] 0.142 0.0563 0.615 0.171
SAMFull 0.175 0.0525 0.660 0.187

Table 8: Comparison of 3D scene reconstruction accuracy
on Replica with non-iid setting.

The second row displays a scene with an open, reverberant
hall with pillars that considerably affects the room acous-
tics, which makes the model prone to mispredict the correct
layout.



Pseudo-GT Ours SceneTeacher

Figure 9: Qualitative examples of audio-based semantic segmentation on DAPS-Semantic test split.
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Figure 10: Qualitative examples of audio-based depth estimation on Replica.
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Figure 11: Qualitative examples of audio-based 3D scene reconstruction on DAPS-3D test split.
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Figure 12: Qualitative examples of audio-based 3D scene reconstruction on Replica.
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