
Technical Appendix
Technical Appendix contains experimental details and

additional experimental results. The code of this pa-

per and some additional analysis will be available at

https://github.com/yuniw18/EGformer.

A. Experimental environment
A.1. Discussions on dataset

For experiments of the main paper, we use Structured3D

(rgb rawlight) [20] and Pano3D (Matterport3D Train and

Test /w Filmic High Resolution) [1] datasets for training

and evaluation. Other datasets are not used for the following

reasons:

PanosunCG [17] Due to license issue, PanoSunCG

dataset is no longer publicly available.

3D60 [21] Recently, it has been pointed out in that the

3D60 dataset encounters an issue with its depth representa-

tion [14, 1]. The images in this dataset exhibit a correlation

between their pixel brightness and depth, as illustrated in

Figure A. Consequently, depth estimation networks can pre-

dict the depths solely by analyzing the pixel brightnesses of

input 3D60 images. Therefore, 3D60 dataset is unsuitable

for evaluating the performances of equirectangular depth

estimation networks.

Figure A: Pixel brightness issue of 3D60 dataset

Matterport3D [3] Because Matterport3D is not natively

available in equirectangular format, a stitching process is re-

quired to be employed as an equirectangular depth dataset.

However, the resulting equirectangular format of Matter-

port3D varies depending on the stitching algorithm used.

This circumstance makes it difficult to use Matterport3D

as a benchmark for equirectangular depth estimation tasks.

Moreover, Pano3D [1] already includes a rendered version

of Matterport3D in its dataset. Hence, using both Pano3D

and the Matterport3D for evaluation would be redundant.

Stanford2D3D [2] Figure B shows that the top and down

parts of equirectangular images in Stanford dataset are not

rendered properly. Since geometric structure is often crucial

in enhancing performance of equirectangular depth estima-

tion tasks [7], images with imperfect structure may nega-

tively impact the performance and thus impede fair com-

parison.

Figure B: Rendering issue of Stanford dataset

A.2. Common training details

For training, official training split of Pano3D and Struc-

tured3D dataset is used. Because the depth values in

Pano3D and Structured3D datasets vary in scale, we use

scale-and-shift-invariant loss [13] as defined by Eq.(3) to

properly train the network with multiple depth dataset

[6, 4, 16, 13, 12, 19]. Here, D indicates predicted depths

of each method, Dg represents ground truth depths and DA

is aligned depths.

s, t = argmin
s,t

(s ·D + t−Dg)

DA = s ·D + t
(1)

Lpix =
1

n
·

n∑

k=1

|(DA −Dg)|

Lgrad =
1

n
·

n∑

k=1

|∇x(D
A −Dg) +∇y(D

A −Dg)|
(2)

Ltotal = Lpix + 0.5 · Lgrad (3)

Because we use scale-and-shift invariant loss function,

the output of all methods is post-processed equally to be

in the range between (0, 1) via a sigmoid function. Each
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Figure C: Overall Architecture of EGformer variant. ⊕ indicates concatenation operation.

Figure D: Predicted depth of Panoformer which is

trained from the scratch. Under our experimental setup,

Panoformer fails to learn proper features when it is trained

from the scratch.

method is trained with Structured3D dataset for 50 epochs

with the learning rate of 5 · 10−5. Continuously, each

method is trained with Pano3D + Structured3D dataset for

20 epochs additionally with the learning rate of 5 ·10−5 and

exponential learning rate decay rate of 0.95. AdamW [9]

optimizer is used with the batch size of 1 for all methods.

A.3. Specific training details of each method

When we train each method under our experimental

setup, we failed to train some methods (e.g. Panoformer,

Yun et al.) when they are trained from the scratch. Figure

D shows a predicted depth of Panoformer which is trained

from the scratch. We conjecture that the deconvolution

layers [10] in Panoformer cause failures of training if the

weight of deconvolution layer is not properly initialized.

Therefore, to train all methods as fair as possible, we uti-

lize the pre-trained model in which each author provides in

the open-source community (i.e. github) as follows:

Panoformer [14] We initialize the weight of convolu-

tion and deconvolution layers (except the transformer) in

Panoformer network using the official pre-trained model in

their github repository. Subsequently, the network is trained

under the environment specified in common training details

(Section A.2).

EGformer We first pre-trained the model from the

scratch using Structured3D dataset for 50 epochs. Then,

from the scratch again, we initialize the weight of convolu-

tion layers (except the transformer) in EGformer using that

pre-trained model. Subsequently, the network is trained un-

der the environment specified in common training details

(Section A.2).

Yun et al. [19] We initialize the weight of convolution

layers in Yun et al. (i.e. decoder part) using the official pre-

trained model (trained using Structured3D) in their github

repository. Subsequently, the network is trained under the

environment specified in common training details (Section

A.2).

Bifuse [18] We initialize the weight of Bifuse network

using the official pre-trained model (trained using Stan-

ford2D3D) in their github repository. Subsequently, the net-

work is trained under the environment specified in common

training details (Section A.2)

SliceNet [11] We initialize the weight of SliceNet net-

work using the official pre-trained model (trained using

Structured3D) in their github repository. Then, the network

is trained additionally for 20 epochs using Pano3D + Struc-

tured3D dataset 1.

1Training with Structured3D for 50 epochs is not executed here because

we load the weights of ’all’ layers in SliceNet using the official pre-trained

model which is trained with Structured3D.



B. Network architecture

The overall network architecture of EGformer is de-

scribed in Figure C, which is similar to Panoformer [14]

network architecture. The channel size is set to C = 32 in

our experimental setup. The yellow blocks are composed

of several convolution, activation and normalization layers.

Figure E shows examples of them. Further details on net-

work architecture can be found in Code Appendix.
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Figure E: Down sample and up sample layer

C. Additional experimental results

C.1. Further analysis on local and global attention

As discussed in various studies [15, 8], vision trans-

former (ViT) [5], in which Yun et al. [19] based on, requires

large scale dataset due to lack of inductive bias. To allevi-

ate the data insufficiency of equirectangular depth dataset,

therefore, Yun et al. [19] performs transfer learning from

the model which is trained with abundant depth dataset of

typical 2D images in their paper. However, under our exper-

imental setup, only equirectangular depth datasets are uti-

lized. As discussed in the main paper, we speculate that this

environment may impair the performances of Yun et al. sig-

nificantly. Therefore, to see the pros and cons of global at-

tention more clearly, we conduct an additional experiment.

Table A shows the experimental results on Structured3D

dataset. EGformer, Panoformer and Yun et al. in Table A

is trained with experimental environment described in Sec-

tion A.3. ’Yun et al. + transfer’ in Table A represents the

model which is trained via the following training environ-

ment: We initialize the weight of Yun et al. network using

the official pre-trained model which is trained with depth

datasets of typical 2D images + Structured3D dataset; then,

we fine-tune the network via Structured3D dataset for 10

epochs with 5 · 10−5 learning rate.

Method Abs.rel Sq.rel RMS.lin δ1 #Param FLOPs

Yun et al. [19] 0.0505 0.0499 0.3475 0.9700 123.7M 589.4G
Panoformer [14] 0.0394 0.0346 0.2960 0.9781 20.4M 77.7G

EGformer 0.0342 0.0279 0.2756 0.9810 16.3M 73.9G

Yun et al. + transfer 0.0342 0.0282 0.2590 0.9842 123.7M 589.4G

Table A: Additional analysis of local and global attention on

Structured3D testset. ’Yun et al. + transfer’ represents the

network which executes transfer learning from the model

trained with abundant depth datasets of typical 2D images.

Input

G.T EGformer

Yun et al. Yun et al. + transfer

Figure F: Qualitative results of Table A. It is shown that

EGformer yields comparable or better results than Yun et
al. (+ transfer) in terms of details with significantly lower

computational cost and fewer parameters.

As shown in Table A, it is observed that ’Yun et al.
+ transfer’ yields the best depth estimation results over-

all which verifies that the number of dataset is critical for

the global attention. However, it should be noted that

local attention based studies (i.e. Panoformer, EGformer)

yield comparable depth estimation results with signifi-

cantly lower computational cost, fewer parameters and less

datasets used as shown in Table A. These results clearly

demonstrate that the local attention is much more ’efficient’

than global attention in equirectangular depth estimation

tasks. Figure G shows the qualitative results of the methods

in Table A. It is shown that EGformer yields comparable or

better results than Yun et al. (+ transfer) in terms of details.

C.2. Additional qualitative results

Here, we present the additional qualitative results of each

method described in the main paper as shown in Figure G.
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Figure G: Additional qualitative results of each method.
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[13] René Ranftl, Katrin Lasinger, David Hafner, Konrad

Schindler, and Vladlen Koltun. Towards robust monocular

depth estimation: Mixing datasets for zero-shot cross-dataset

transfer. IEEE transactions on pattern analysis and machine
intelligence, 44(3):1623–1637, 2020. 1

[14] Zhijie Shen, Chunyu Lin, Kang Liao, Lang Nie, Zishuo

Zheng, and Yao Zhao. Panoformer: Panorama transformer

for indoor 360 depth estimation. In Computer Vision–ECCV

2022: 17th European Conference, Tel Aviv, Israel, October
23–27, 2022, Proceedings, Part I, pages 195–211. Springer,

2022. 1, 2, 3

[15] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco

Massa, Alexandre Sablayrolles, and Hervé Jégou. Training
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