
Boosting Novel Category Discovery Over Domains
with Soft Contrastive Learning and All-in-One Classifier

Appendix:

A. Details of SCL loss
A.1. Details of the transformation from Eq. (1) to Eq. (2)

We start with LCL = � log exp(S(zi,zj))PNK
k=1 exp(S(zi,zk))

(Eq. (1)), then

LCL = logNK � log
exp(S(zi, zj))

1
NK

PNK

k=1 exp(S(zi, zk))
.

We are only concerned with the second term that has the gradient. Let (i, j) are positive pair and (i, k1), · · · , (i, kN) are
negative pairs. The overall loss associated with point i is:

� log
exp(S(zi, zj))

1
NK

PNK

k=1 exp(S(zi, zk))

=�

"
log exp(S(zi, zj))� log

1

NK

NKX

k=1

exp(S(zi, zk))

#

=�

"
log exp(S(zi, zj))�

NKX

k=1

log exp(S(zi, zk)) +
NKX

k=1

log exp(S(zi, zk))� log
1

NK

NKX

k=1

exp(S(zi, zk))

#

=�

"
log exp(S(zi, zj))�

NKX

k=1

log exp(S(zi, zk)) + log⇧NK
k=1 exp(S(zi, zk))� log

1

NK

NKX

k=1

exp(S(zi, zk))

#

=�

"
log exp(S(zi, zj))�

NKX

k=1

log exp(S(zi, zk)) + log
⇧NK

k=1 exp(S(zi, zk))
1

NK

PNK

k=1 exp(S(zi, zk))

#

We focus on the case where the similarity is normalized, S(zi, zk) 2 [0, 1]. The data i and data k is the negative samples,

then S(zi, zk) is near to 0, exp(S(zi, zk)) is near to 1, thus the ⇧
NK
k=1 exp(S(zi,zk))

1
N

PNK
k=1 exp(S(zi,zk))

is near to 1, and log
⇧

NK
k=1 exp(S(zi,zk))

1
N

PNK
k=1 exp(S(zi,zk))

near to 0. We have

LCL ⇡ �

"
log exp(S(zi, zj))�

NKX

k=1

log exp(S(zi, zk))

#

We denote ij and ik by a uniform index and use Hij to denote the homology relation of ij.

LCL ⇡ �

"
log exp(S(zi, zj))�

NKX

k=1

log exp(S(zi, zk))

#

⇡ �

2

4Hij log exp(S(zi, zj))�
NKX

j=1

(1�Hij) log exp(S(zi, zj))

3

5

⇡ �

2

4
NK+1X

j=1

{Hij log exp(S(zi, zj)) + (1�Hij) log{exp(�S(zi, zj))}}

3

5

we define the similarity of data i and data j as Qij = exp(S(zi, zj)) and the dissimilarity of data i and data j as
Q̇ij = exp(�S(zi, zj)).

LCL ⇡ �

2

4
NK+1X

j=1

n
Hij logQij + (1�Hij) log Q̇ij

o
3

5

A.2. The proposed SCL loss is a smoother CL loss

This proof tries to indicate that the proposed SCL loss is a smoother CL loss. We discuss the differences by comparing
the two losses to prove this point. the forward propagation of the network is, zi = H(ẑi), ẑi = F (xi), zj = H(ẑj), ẑj =
F (xj). We found that we mix y and ẑ in the main text, and we will correct this in the new version. So, in this section
zi = H(yi), yi = F (xi), zj = H(yj), yj = F (xj) is also correct.

Let H(·) satisfy K-Lipschitz continuity, then d
z
ij = k

⇤
d
y
ij , k

⇤
2 [1/K,K], where k

⇤ is a Lipschitz constant. The
difference between LSCL loss and LCL loss is,

LCL � LSCL ⇡

X

j

�
Hij � [1 + (e↵ � 1)Hij]

�
d
y
ij

��
log

1

�
d
z
ij

� � 1

!�
. (10)

Because the ↵ > 0, the proposed SCL loss is the soft version of the CL loss. if Hij = 1, we have:

(LCL � LSCL)|Hij=1 =
X�

(1� e
↵)

�
k
⇤
d
z
ij

��
log

1

�
d
z
ij

� � 1

!�
(11)

then:

lim
↵!0

(LCL � LSCL)|Hij=1 = lim
↵!0

X�
(1� e

↵)
�
k
⇤
d
z
ij

��
log

1

�
d
z
ij

� � 1

!�
= 0 (12)

Based on Eq.(12), we find that if i, j is neighbor (Hij = 1) and ↵ ! 0, there is no difference between the CL loss LCL
and SCL loss LSCL. When if Hij = 0, the difference between the loss functions will be the function of dzij . The CL loss LCL
only minimizes the distance between adjacent nodes and does not maintain any structural information. The proposed SCL
loss considers the knowledge both comes from the output of the current bottleneck and data augmentation, thus less affected
by view noise.

Details of Eq. (10). Due to the very similar gradient direction, we assume Q̇ij = 1 � Qij . The contrastive learning loss
is written as,

LCL ⇡�

X
{Hij logQij + (1�Hij) log (1�Qij)} (13)

where Hij indicates whether i and j are augmented from the same original data.
The SCL loss is written as:

LSCL = �

X
{Pij logQij + (1� Pij) log (1�Qij)} (14)

According to Eq. (4) and Eq. (5), we have

Pij = Rij(d
y
ij) = Rij(yi, yj), Rij =

⇢
e
↵ if H(xi, xj) = 1
1 otherwise ,

Qij = (dzij) = (zi, zj),

(15)

For ease of writing, we use distance as the independent variable, dyij = kyi � yjk2, dzij = kzi � zjk2.
The difference between the two loss functions is:

LCL � LSCL

=�

X
Hij log

�
d
z
ij

�
+ (1�Hij) log

�
1�

�
d
z
ij

��
�Rij

�
d
y
ij

�
log

�
d
z
ij

�
�
�
1�Rij

�
d
y
ij

��
log

�
1�

�
d
z
ij

�� �

=�

X�
Hij �Rij

�
d
y
ij

��
log

�
d
z
ij

�
+
�
1�Hij � 1 +Rij

�
d
y
ij

��
log

�
1�

�
d
z
ij

�� �

=�

X�
Hij �Rij

�
d
y
ij

��
log

�
d
z
ij

�
+
�
Rij

�
d
y
ij

�
�Hij

�
log

�
1�

�
d
z
ij

�� �

=�

X�
Hij �Rij

�
d
y
ij

�� �
log

�
d
z
ij

�
� log

�
1�

�
d
z
ij

��� �

=
X�

Hij �Rij
�
d
y
ij

��
log

1

�
d
z
ij

� � 1

!�

(16)
Substituting the relationship between Hij and Rij , Rij = 1 + (e↵ � 1)Hij , we have

LCL � LSCL =
X�

Hij � [1 + (e↵ � 1)Hij]
�
d
y
ij

��
log

1

�
d
z
ij

� � 1

!�
(17)

We assume that network H(·) to be a Lipschitz continuity function, then

1

K
H(dzij) d

y
ij KH(dzij) 8i, j 2 {1, 2, · · · , N} (18)

We construct the inverse mapping of H(·) to H
�1(·),

1

K
d
z
ij d

y
ij Kd

z
ij 8i, j 2 {1, 2, · · · , N} (19)

and then there exists k⇤:
d
y
ij = k

⇤
d
z
ij k

⇤
2 [1/K,K] 8i, j 2 {1, 2, · · · , N} (20)

Substituting the Eq.(20) into Eq.(17).

LCL � LSCL =
X�

Hij � [1 + (e↵ � 1)Hij]
�
k
⇤
d
z
ij

��
log

1

�
d
z
ij

� � 1

!�
(21)

A.3. SCL is better than CL in view-noise
To demonstrate that compared to contrastive learning, the proposed SCL Loss has better results, we first define the signal-

to-noise ratio (SNR) as an evaluation metric.

SNR =
PL

NL
(22)

where PL means the expectation of positive pair loss, NL means the expectation of noisy pair loss.
This metric indicates the noise-robust of the model, and obviously, the bigger this metric is, the better.
In order to prove the soft contrastive learning’s SNR is larger than contrastive learning’s, we should prove:

PLcl

NLcl
<

PLscl

NLscl
(23)

Obviously, when it is the positive pair case, S (zi, zj) is large if H (xi, xj) = 1 and small if H (xi, xj) = 0. Anyway,
when it is the noisy pair case, S (zi, zj) is small if H (xi, xj) = 1 and large if H (xi, xj) = 0.
First, we organize the PLscl and PLcl into 2 cases, H (xi, xj) = 1 and H (xi, xj) = 0, for writing convenience, we write
S (zi, zj) as S and S

0, respectively.

PLscl = �M {(1� S
0) log (1� S

0) + S
0 logS0

}� {(1� e
↵
S) log(1� S) + e

↵
S logS} (24)

PLcl = �M log (1� S
0)� logS (25)

M is the ratio of the number of occurrences of H = 1 to H = 0. So, we could get:

PLscl � PLcl

= �M {(1� S
0
� 1) log (1� S

0) + S
0 logS0

}� {(1� e
↵
S) log(1� S) + (e↵S � 1) logS}

= �M {S
0 (logS0

� log (1� S
0))}� {(e↵S � 1) (logS � log(1� S))}

= �M

⇢
S
0
log

S
0

(1� S0)

�
�

⇢
(e↵S � 1)log

S

(1� S)

�
(26)

In the case of positive pair, S converges to 1 and S
0 converges to 0.

Because we have bounded that e↵S <= 1, so we could easily get:

(e↵S � 1)log
S

(1� S)
<= 0 (27)

Also, we could get:

�M

⇢
S
0
log

S
0

(1� S0)

�
> 0 (28)

So we get:
PLscl � PLcl > 0 (29)

And for the case of noise pair, the values of S and S
0 are of opposite magnitude, so obviously, there is NLscl �NLcl < 0.

So the formula Eq. (23) has been proved.

B. Details of Balance Hscore
Inspired by the idea of Weighted Harmonic Means, the proposed Balance Hscore is,

Balance Hscore = B =
1 + ✓

1
Ac

+ ✓
At

=
AtAc

At + ✓Ac
(1 + ✓) (30)

where ✓ is the ratio of unknown and known samples, The Ac is the accuracy of known classes, and At is the accuracy of
unknown classes.

Why Balance Hscore is balance for known classes and unknown classes. To avoid sacrificing a category’s accuracy in
exchange for another category’s accuracy, we assume that the change in the number of the correct categories and the number
of the unknown categories has the same impact on the evaluation metric.

Let M be the number of the samples of known classes, and Nc be the number of the correct samples of known classes,
with Ac = Nc/M . The impact of Balance Hscore from the known class is,

@B

@Nc
=

@B

@Ac
·
@Ac

@Nc

= At(1 + ✓) ·
✓Ac +At � ✓Ac

(✓Ac +At)2
·
1

M

=
(1 + ✓)A2

t

M(✓Ac +At)2

(31)

Let Mt be the number of the samples of known classes, and Nt be the number of the correct samples of known classes,
with At = Nt/Mt = Nt/(✓M). The impact of a Balance Hscore from the unknown class is,

@B

@Nt
=

@B

@At
·
@At

@Nt

= Ac(1 + ✓) ·
(✓Ac +At)�At

(✓Ac +At)2
·

1

✓M
=

(1 + ✓)A2
c

M(✓Ac +At)2

(32)

So if Ac = At, we have
@B

@Nc
=

@B

@Nt
,

it indicates that the metric gets the same influence as the correct classification. Thus the Balance Hscore is balance for known
and unknown classes.

Why Hscore is unbalance for known classes and unknown classes. However, for the

Hscore = (2 ·Ac ·At)/(Ac +At).

The impact of the Hscore by the known class is
@H

@Nc
=

@H

@Ac
·
@Ac

@Nc

= 2At ·
At +Ac �Ac

(Ac +At)2
·
1

M

=
2A2

t

M(Ac +At)2

(33)

The impact of the Hscore by the unknown class is
@H

@Nt
=

@H

@At
·
@At

@Nt

= 2Ac ·
Ac +At �At

(Ac +At)2
·

1

✓M

=
2A2

c

✓M(ActAt)2

(34)

So when Ac = At, we could get @B
@Nc

6= @B
@Nt

, we think it’s not balance.

C. Experimental setups
C.1. Baseline Methods

We aim to compare methods of universal domain adaptation (UNDA), which can reject unknown samples, such as,
CMU [11], DANCE [26], DCC [19], OVANet [27], TNT [6], GATE [5] and D+SPA [17]. We are looking at some con-
temporaneous work such as KUADA [35], UACP [34] and UEPS [36], which we did not include in the comparison because
the source code was not available and some of these works were not peer-reviewed. Instead of reproducing the results of
these papers, we directly used the results reported in the papers with the same configuration.

C.2. Datasets
We utilize popular datasets in DA: Office [25], OfficeHome [32], VisDA [24], and DomainNet [23]. Unless otherwise

noted, we follow existing protocols [27] to split the datasets into source-private (|Ls � Lt|), target-private (|Lt � Ls|) and
shared categories (|Ls \ Lt|).

Table 6: The division on label sets in each setting

Tasks Datasets |Ls \ Lt| |Ls � Lt| |Lt � Ls|

ODA Office-31 10 0 11
VisDA 6 0 6

UNDA

Office-31 10 10 11
Office-Home 10 5 50
VisDA 6 3 3
DomainNet 150 50 145

C.3. Top n softmax in AIO
The forward propagation of CAIO (·) is

Cxi =
�
c
k
xi
, c̃

k
xi
|k 2 K

= �

�
C

AIO (zxi)
�
, (35)

The ckxi
and c̃

k
xi

are the probability of xi being identified as a known and unknown class by kth category,
P

k

�
c
k
xi

+ c̃
k
xi

= 1.

The �(·) is a ‘top n softmax’ function to ensure
P

k2T N {c
k
xi

+ c̃
k
xi
} = 1, T N is the top N = 20 item of Cxi . We deploy

‘top n softmax’ to balance the loss scale of different category numbers. For example, in UNDA setting, there are 200 known
categories in DomainNet, while only 20 known categories in Office. If deploying a simple softmax, the loss scale will vary
over a wide range with different datasets.

	. Introduction
	. Related work
	. Methods
	. View-noise and Soft Contrastive Learning Loss
	. Overconfidence and All in One (AIO) Classifier
	. Learning & Inference

	. Results
	. Analysis in Universal Domain Adaptation

	. Conclusion
	. Details of SCL loss
	. Details of the transformation from Eq. (1) to Eq. (2)
	. The proposed SCL loss is a smoother CL loss
	. SCL is better than CL in view-noise

	. Details of Balance Hscore
	. Experimental setups
	. Baseline Methods
	. Datasets
	. Top_n softmax in AIO

