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Supplementary material

The supplementary material is organized as follows: In
Sec. A we provide additional implementation details of our
proposed method. Sec. B reports the results of additional
experiments and ablation studies. Finally, in Sec. C we pro-
vide UMAP visualizations.

A. DALL-V implementation details
In this section we describe additional implementation de-

tails of DALL-V. The pseudo-code of the ensemble distil-
lation in DALL-V is provided in Algo. 1.

Network architecture. We employ the CLIP pre-trained
ViT-B/32 [4] backbone as the vision encoder for the source
pre-training and the target adaptation phase. For the student
network in the ensemble distillation phase (Sec. 4.3.2 of the
main) we employ the CLIP pre-trained ResNet50 backbone
to be comparable with the best SFVUDA competitors. Note
that in all the training phases, we keep the CLIP vision en-
coders frozen to avoid losing the rich representation power
of CLIP.

Following the prior works on parameter efficient fine-
tuning [2, 1] of pre-trained models, we append trainable
adapters A(·) : Rd → Rd on top of the vision encoder of
CLIP in all the phases of our DALL-V, where d is the input
feature dimension. As shown in Fig. 1, the adapter is com-
posed of a down-projection linear layer, ReLU non-linearity
and a second up-projection layer, followed by a last ReLU.
The dimension of the hidden features after the first down-
projection layer is 1/4th of the input dimension d.

Unlike [1], we do not use adapter on top of the language
encoder, and the language embeddings are directly used to
compute the output probability following Eq. 1 of the main
paper. Similar to the vision encoder, we do not update the
language encoder.

Pseudo-labeling protocol. As mentioned in Sec. 4.3.1 of
the main paper, we employ zero-shot CLIP (ViT-B/32) to
obtain pseudo-labels of the target videos, which are then
used to train the target adapter AT. Given the pseudo-labels
can be noisy, we opt for a pseudo-label filtering technique to
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Figure 1: Architecture of the adapter and integration with
the CLIP vision encoder. The means the network is

trainable, while the means the network is frozen.

reduce the impact of noisy pseudo-labels in the target adap-
tation phase. In detail, we follow [7] to obtain a set of class-
wise thresholds to filter out the noisy pseudo-labels. We
consider the distribution of the confidence values of all the



Algorithm 1 Pseudo-code of ensemble distillation in
DALL-V in a PyTorch-like style

# class_names (list(str)): names of classes
# class_idxs (list(int)): index of classes
# prompts (list(str)): textual prompts
# ensemble (nn.Module): ensemble of CLIP(’ViT-B/32’),
# source adapter, and target adapter.

# create the student backbone
st_backbone: nn.Module = CLIP(’RN50’)
st_backbone.eval() # freeze the student

# add the student adapter
st_backbone.adapter: nn.Module = Adapter()

# get the textual embeddings
prompts: list(str) = combine(prompts, class_names)
prompts_z: Tensor = st_backbone.language_encoder(

prompts
)

# distill
for epoch in epochs:

for x in target_loader: # use the whole target
# pseudo-label with the ensemble of teachers
ensemble_p: Tensor = ensemble(x)
pseudo_y = ensemble_p.max(dim=-1)[1]

# forward the images
out: Tensor = st_backbone.vision_encoder(x)
out: Tensor = st_backbone.adapter(out)

# evaluate the zero-shot probabilities
images_p: Tensor = cosine_sim(out, classes_z)
images_p: Tensor = softmax(images_p)

# calculate the loss
discrepancy_loss: Tensor = KL(

images_p, ensemble_p
)
ce_loss: Tensor = CrossEntropy(

images_p, pseudo_y
)

# calculate the loss
loss: Tensor = (

alpha * discrepancy_loss +
(1 - alpha) * ce_loss

)

# update the adapter parameters
loss.backward()
update(st_backbone.adapter.params)

target predictions associated with a class and set the thresh-
old as the 80th percentile. All the predictions for that class
having confidence lower than the chosen threshold are fil-
tered out and not used in target adaptation.

B. Additional experiments
Parameter/Performance trade-off. As outlined in Sec.
4.3.2 of the main paper, in DALL-V we fine-tune only the
adapter Ā, appended to the student vision encoder ḠV(·),
during the ensemble distillation phase. While this design
choice substantially reduces the number of trainable param-
eters, it can be sub-optimal in cases where the target domain
differs greatly from the CLIP training distribution. Thus, it
presents a trade-off between performance and parameter ef-
ficiency.

To better understand this trade-off, we compare the
adapter fine-tuning with the full fine-tuning of the vision
encoder, where the entire encoder is trainable. Note that

Trainable
# params

H→U U→H Avg.

Adapter 0.26M 93.1 88.9 91.0
Full fine-tune 102M 95.6 88.0 91.8

Table 1: Comparison of performance between adapter fine-
tuning and full encoder fine-tuning on the UCF-HMDBfull

benchmark. “M” stands for million.

Prompts

a photo of action [CLS]
a picture of action [CLS]
Human action of [CLS]
[CLS], an action
[CLS] this is an action
[CLS], a video of action
Playing action of [CLS]
[CLS]
Playing a kind of action, [CLS]
Doing a kind of action, [CLS]
Look, the human is [CLS]
Can you recognize the action of [CLS]?
Video classification of [CLS]
A video of [CLS]
The man is [CLS]
The woman is [CLS]

Table 2: The list of all 16 prompts used in DALL-V.

the adapter is not used in the full fine-tuning experiment, as
done in prior works [2]. We conducted this ablation study
on the UCF-HMDBfull benchmark and report the results
in Tab. 1. We observe that for the HMDB → UCF adapta-
tion setting, fine-tuning all the weights of the encoder leads
to an improvement of 2.5% when compared with training
only the adapter weights. On the other hand, for the reverse
adaptation setting of UCF → HMDB, fine-tuning all the
weights is detrimental to the performance, with a drop of
0.9% points. Thus, overall the full fine-tuning baseline out-
performs the adapter model by 0.8% on average, at the cost
of increased training time due to the significantly higher
magnitude of trainable weights in the network. To sum-
marize, fine-tuning only the adapter, which is ∼ 0.25% of
the full model size, is highly parameter-efficient and, at the
same time, maintains comparable performance. This abla-
tion study’s findings align with the usage of adapters in NLP
tasks [2].

Effectiveness of prompts. It has been shown in the
NLP [5, 3] and vision-based [9, 8, 6] tasks that prompt-
ing has a significant impact on the performance when re-
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Figure 2: UMAP visualisation of the feature space on Daily-DA for the zero-shot CLIP (RN50), source, target and final
DALL-V models. The chart shows the ability of our proposed DALL-V to efficiently cluster the action categories in the
features space by combining knowledge from the other three models.

Prompts UCF-HMDBfull Daily-DA

Mixed (Ours) 89.7 48.1
Only-image 89.8 (+0.1%) 47.7 (-0.6%)
CLIP [4] 83.2 (-6.5%) 43.7 (-4.4%)

Table 3: Impact of prompts on the zero-shot performance
using the UCF-HMDBfull and Daily-DA benchmarks.

purposing (or fine-tuning) large-scale pre-trained models
on downstream tasks. Following ActionCLIP [6], we also
choose a set of hand-crafted language prompts for obtain-
ing pseudo-labels and training DALL-V. The complete set
of prompts is reported in Tab. 2.

To further assess the impact of the prompts in SFVUDA,
we design an ablation study where we vary the prompts pro-
vided to the language encoder. In detail, we create an al-
ternate version of the prompts listed in Tab. 2, where we
replace all the occurrences of the token “video” with the
token “image”. This is done with the motivation that we
obtain predictions at the frame level, which are then fused
in the output space of the network. We call this baseline
an “only-image” since the prompts do not contain the to-
ken “video”. We denote the prompts in our DALL-V as
“mixed”, given it uses a mixture of both kinds of tokens
(i.e., “image” and “video”) in the prompts. Finally, we cre-
ate another baseline that uses the hand-engineered prompts
used in the original CLIP paper (we refer the reader to [4]
for the full list). We report the results of the experiments
on both benchmarks in Tab. 3. Note that we simply report
the zero-shot validation performance in Tab. 3 and not the
performance after the final distillation step.

From Tab. 3, we observe that the “only-image” baseline
has comparable performance compared to our DALL-V (or
“mixed”). This kind of behaviour is expected because the
predictions from the CLIP backbone are obtained at frame
level and the network is activated more or less similar when
the “video” token in the prompt is replaced by “image”.

On the contrary, usage of original prompts from the
CLIP paper resulted in big drops of 6.5% and 4.4%, on
UCF-HMDBfull and Daily-DA, respectively. We can in-
fer from these results that shorter and more action-oriented
prompts (as in “mixed” or “only-image”) are more benefi-
cial for the SFVUDA task.

C. Additional visualizations
In Fig. 2 we plot the UMAP visualizations of the fea-

tures produced by the zero-shot CLIP (RN50), source, tar-
get and final DALL-V models for the Daily-DA dataset,
which were omitted for space issues from the main paper.
The chart shows that on this benchmark, similarly to what
is shown for UCF-HMDBfull in the main paper, our pro-
posed DALL-V method is able to benefit from all intermedi-
ate complementary models in order to enforce a more class-
discriminative modeling of the target domain.
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