
7. Supplementary material
7.1. Metrics details

The GED and HM-IoU metrics used in our work are
computed as follows:

GED: Let pm be the distribution over samples generated
by a model and pgt the distribution over possible ground-
truth labels; the GED is computed as

GED(pm, pgt) =2Es∼pm,ŝ∼pgt [d(s, ŝ)]− Es,ŝ∼pgt [d(s, ŝ)]

− Es,ŝ∼pm [d(s, ŝ)], (19)

where the distance function d(·, ·) = 1− IoU(·, ·).
HM-IoU: Finds the optimal matching between ground

truth and generated samples. Specifically, for n gener-
ated samples, the ground-truth samples are duplicated to n.
Then, the HM-IoU is defined as the maximum IoU possible,
given that every generated sample is matched with a unique
ground-truth label, found by minimizing

HM-IoU = min
X

∑
i

∑
j

d(i, j)Xi,j , (20)

where X is a boolean matrix that assigns every row to a
unique column using d(·, ·) = 1− IoU(·, ·).

7.2. Sample diversity

Sample diversity is the expected distance between gen-
erated samples, i.e., Es,ŝ∼pm [d(s, ŝ)], which corresponds to
the last term of GED in Eq. (19). We report the sample di-
versity for 16, 32, 50, and 100 samples for both LIDC splits
in Tab. 4 and Tab. 5.

LIDCv1
Method Div16 Div32 Div50 Div100

CCDM 0.491±0.001 0.509±0.001 0.515±0.002 0.519±0.002

Table 4: Sample diversity for our method on LIDCv1.

LIDCv2
Method Div16 Div32 Div50 Div100

CCDM 0.487±0.003 0.503±0.003 0.509±0.003 0.515±0.002

Table 5: Sample diversity for our method on LIDCv2.

7.3. Model size

While our 9M CCDM as reported in Tab. 1 is of compa-
rable size to most other baselines, we show in Tab. 6 that by
increasing the size of our CCDM from 9M to 41M, we get

an increase in performance across all six metrics computed
on LIDCv1. Additionally, the CCDM seems to benefit more
from the increase in size than MoSE [15]. While we already
outperform the other baselines with our 9M model, this re-
sult suggests that we can improve the performance even fur-
ther by using larger models.

LIDCv1
Method #params GED16 GED32 GED50 GED100 HM-IoU16 HM-IoU32

MoSE [15] 9m 0.219 - 0.195 0.190 0.620 -
MoSE [15] 42m 0.218 - 0.195 0.189 0.624 -

CCDM 9m 0.212 0.194 0.187 0.183 0.623 0.631
CCDM 41m 0.207 0.189 0.182 0.177 0.629 0.636

Table 6: Performance of CCDM and MoSE on LIDCv1
with different model sizes.

7.4. Training settings of baselines on Cityscapes

On Cityscapes, all baselines were trained for 500 epochs
using the optimizer, learning rate schedule, and weight de-
cay (denoted by wd) reported in their original publications.
Tab. 7 details these settings for each case. All models are
trained using a cross-entropy loss.

Method Settings

Arch. Backbone Lr Decay wd Batch Size Optim

HRNet [47] w48v2 10−2 polynomial 5× 10−5 32 sgd
DeepLabv3 [7] ResNet50/101 10−2 polynomial 5× 10−5 32 sgd
UPerNet [51] ResNet101 10−2 polynomial 5× 10−5 32 sgd
UPerNet [32] Swin-T 10−4 warmup+linear 10−2 32 AdamW

Table 7: Training settings of baselines on Cityscapes.

7.5. Additional comparisons on Cityscapes

Method mIoU

Architecture Backbone #params 128× 256 256× 512

UNet (CE) [13] - 30m 48.7 61.0

CCDM (ours) -
samples=1 30m 53.2 60.3
samples=5 30m 55.4 62.0

samples=10 30m 56.2 62.4

UNet (CE) [13] Dino ViT-S (†) 30m + 20M 53.4 63.2

CCDM (ours) Dino ViT-S (†)
samples=1 30m + 20M 55.5 64.0
samples=5 30m + 20M 56.9 65.4

samples=10 30m + 20M 57.3 65.8

Table 8: Comparison of our method to UNet and UNet-
Dino, trained with standard Cross-Entropy (CE) loss, on
Cityscapes-val. Bold and underlined indicate best and
second best per column, respectively. (†) indicates self-
supervised pretraining of the backbone. Gray indicates pre-
trained, non-finetuned parameters.



Figure 6: Qualitative comparisons of our method to competitive baselines on Cityscapes validation set.

Figure 7: Visualization of the forward diffusion process at different time steps.

We evaluate the gains of CCDMs with respect to their
backbone architectures when used as standalone segmenta-
tion models. To this end, we compare the performance of
our CCDM trained as defined in Alg. 1 and the UNet trained
with a standard cross-entropy loss, both on the Cityscapes
dataset. Similarly, we compare CCDM-Dino to its stan-
dalone backbone architecture DinoViT-S. In all cases, we
adopt the same training settings as our method, namely,
800 epochs, linearly decayed learning rate, batch size of 32
at 128 × 256 and 16 at 256 × 512. As shown in Tab. 8,
CCDM and CCDM-Dino outperform their respective stan-
dalone architectures.

We also provide additional qualitative comparisons of
our method to competitive baselines in Fig. 6. Finally,
Fig. 7 shows an example of the evolution of a Cityscapes
label map under the forward diffusion process described by
Eq. (4).


