
6. Implementation Details
The number of communication rounds is 2000 for most

methods on CIFAR-10/100-LT and 1000 on ImageNet-LT.
On the CIFAR-100-LT, the learning rate is initialized as 0.5
and decayed by 0.05 at round 1600 for all methods except
PaCo [5], where the initial learning rate is 0.3. On the
CIFAR-10-LT [2] with imbalance ratio 50 and 100, the ini-
tial learning rate is 0.1 for FedAvg [23], Ratio Loss [36],
CLIMB [32], Focal Loss [21], CRT [15], LDAM [2], BSM
[?], LADE [13], and GBME. It is 0.2 for RIDE [37] and 0.3
for PaCo. The learning rate is decayed by 0.1 for all meth-
ods. With RIDE, PaCo, and GBME, the model is trained
for 2500 communication rounds on CIFAR-10-LT due to
their complex model structures. For training on ImageNet-
LT [22], we set the training round as 1000 and learning rate
as 0.1, which is decayed at 800th round by 0.1. For CRT,
we retrain the classifier on the last 200 rounds. For LADE,
we set the weight of LADER as 0.01 for CIFAR-10-LT and
0.1 for CIFAR-100-LT and ImageNet-LT. We set client se-
lection ratio α = 0.6 in GBME on all datasets.

7. Comparison with More FL Methods

Table 12: Top-1 accuracy of various FL algorithms for deal-
ing with data heterogeneity on CIFAR-100-LT.

IR FedAvg FedProx SCAFFOLD
w/o BSM w/ BSM w/o BSM w/ BSM w/o BSM w/ BSM

50 36.84 41.91 38.77 42.33 40.44 42.27
100 34.48 37.19 34.16 37.78 34.70 38.55

IR FedAlign Ditto FedRep
w/o BSM w/ BSM w/o BSM w/ BSM w/o BSM w/ BSM

50 39.80 43.66 37.03 39.29 37.69 39.17
100 35.36 39.21 33.45 35.18 32.23 35.04

We further adpoted FedProx [18], SCAFFOLD [16],
FedAlign [25], Ditto [17] and FedRep [4] as baselines on
the CIFAR100-LT. They are recent FL algorithms for deal-
ing with data heterogeneity. When combined with BSM
loss [?], for non-personalized FL methods (i.e., FedProx
[18], SCAFFOLD [16], FedAlign [25]), we use GPI as
the class prior of local re-balance, and for personalized FL
methods (i.e., Ditto [17], FedRep [4]).

As shown in Table 12, the non-personalized FL meth-
ods are effective in FL with relatively mild class imbalance
(imbalance ratio = 50), while are less effective when class
imbalance is severe (imbalance ratio = 100). More impor-
tantly, when combined with our re-balance strategy, these
methods can obtain a significant performance improvement
for various imbalance ratios.

However, the personalized FL methods Ditto [17] and
FedRep [4] perform worse on the federated long-tailed
problem, even with more training rounds. We believe the
main reason is the distribution shift. Under the general set-
ting of personalized FL without the long-tailed problem, the
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Figure 8: Comparison between the global label distribution
and GPI on CIFAR-100-LT with IR = 10 and IR = 100.

distribution of test data and training data are identical. How-
ever, considering the long-tailed problem, the training data
is imbalanced and the test data is balanced for each client,
resulting in a distribution shift. The personalized model
focuses more on fitting the local training data distribution
and therefore generalizes poorly to different data distribu-
tions. Compared with the personalized FL methods, non-
personalized FL methods with a well-trained global model
have a stronger generalization ability, so they can achieve
better performance on the federated long-tailed problem.

8. GPI Visualization

As shown in Figure 8, we visualize the class-wise GPI
curves on CIFAR-100-LT with IR = 10 and IR = 100. Un-
der the same IR, GPI curves exhibit a similar tendency with
the ground-truth label distribution, which can as a global
balanced prior for existing re-balance strategies. Besides,
GPI can maintain the performance of majority classes by
using smaller GPI values for re-balancing.

9. Visualization of Data Distribution

To simulate the data heterogeneity, for each class in the
global dataset, we partition the samples into different clients
according to the Dirichlet distribution. In this section, we
partition the CIFAR10-LT into 10 clients with different val-
ues of αdir, i.e., the hyper-parameter of the Dirichlet distri-
bution. In Figure 9, (d, e, f) show the data distributions
of local clients with different values of αdir, and (a, b,
c) show the corresponding probability density of the two-
dimensional Dirichlet distribution. The point size indicates
the sample number. Small αdir results in higher heterogene-
ity. The global label distribution of the CIFAR10-LT with
IR = 100 is shown in Figure 9(g).
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Figure 9: The heterogeneous long-tailed data distributions of local datasets with different Dirichlet settings.

10. Proofs
10.1. Proof to Theorem 1

We denote the global objective of FL model with global
re-balance and local re-balance as Gg(θ) and Gl(θ), respec-
tively, then we have:

Gg(θ) =
∑

k∈{0,1}

nk

n0 + n1

∑
c∈{+,−}

n0 + n1

(nc
0 + nc

1)nk
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=
∑

c∈{+,−}

1

nc
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1

∑
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f(x, yc, θ) ,

(9)
and

Gl(θ) =
∑

k∈{0,1}

nk
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∑
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1
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k

∑
(x,yc)∈Dk
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∑
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(
n0
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0

+
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nc
1

)
∑

(x,yc)∈D

f(x, yc, θ) ,

(10)
where c is the class index. Then, the objective gap is:

∆ = Gl(θ)−Gg(θ)

=
∑

c∈{+,−}

n1(n
c
0)

2 + n0(n
c
1)

2

nc
0n

c
1(n0 + n1)(nc

0 + nc
1)

∑
(x,yc)∈D

f(x, yc, θ).

(11)

For sample number nc
k > 0, we have ∆ > 0, indicating that

the objective function value of local re-balance is always
larger than global re-balance on the same dataset. Thus, let
E be the approximate estimation of global label distribution,
taking E as the prior for the global re-balance strategy e, the
strategy e based global objective Ge satisfies:

Gg(θ) ≤ Ge(θ) < Gl(θ). (12)

Proof is completed.

10.2. Proof to Theorem 2

Let v be any vector satisfying ∥v∥ ≤ ∆. For the one
dimensional case, we seek conditions on σ to bound the
privacy loss: ∣∣∣∣∣ln e(−1/2σ2)∥x−µ∥2

e(−1/2σ2)∥x+v−µ∥2

∣∣∣∣∣ (13)

where x is sampled from N (0,Σ) and Σ is a diagonal ma-
trix with entries σ and µ = (0, . . . , 0).∣∣∣∣∣ln e(−1/2σ2)∥x−µ∥2

e(−1/2σ2)∥x+v−µ∥2

∣∣∣∣∣ = ∣∣∣ln e(−1/2σ2)[∥x−µ∥2−∥x+v−µ∥2]
∣∣∣

=| 1

2σ2

(
∥x∥2 − ∥x+ v∥2

))
| .

(14)



Considering the right triangle with base v+x[1] and edge∑m
i=2 x

[i] orthogonal to v, following [8], the hypotenuse of
this triangle is x+ v.

∥x+ v∥2 =
∥∥∥v + x[1]

∥∥∥2 + m∑
i=2

∥∥∥x[i]
∥∥∥2

∥x∥2 =

m∑
i=1

∥∥∥x[i]
∥∥∥2 . (15)

Assuming without loss of generality that x[1] is parallel to
v, we have

∥∥v + x[1]
∥∥2 =

(
∥v∥+ ∥x∥[1]

)2
. Thus, ∥x +

v∥2−∥x∥2 = ∥v∥2 +2x[1] · ∥v∥. Because of ∥v∥ ≤ ∆ and
x[1] ∼ N (0, σ2), we have by writing x[1] as λ:∣∣∣∣ 1

2σ2

(
∥x∥2 − ∥x+ v∥2

)∣∣∣∣ ≤ ∣∣∣∣ 1

2σ2

(
2λ∆+∆2

)∣∣∣∣ (16)

This quantity is bounded by ϵ whenever λ < σ2ϵ/∆−∆/2.
To ensure privacy loss bounded by ϵ with probability at least
1− δ, we require

Pr
[
|λ| ≥ σ2ϵ/∆−∆/2

]
< δ (17)

We use the tail bound

Pr[λ > t] ≤ σ√
2π

e−t2/2σ2

(18)

Thus we have

δ < Pr[λ > t] ≤ σ√
2π

e−t2/2σ2

(19)

We require

σ√
2π

1

t
e−t2/2σ2

< δ/2

⇔σ
1

t
e−t2/2σ2

<
√
2πδ/2

⇔ t

σ
et

2/2σ2

> 2/
√
2πδ

⇔ ln(t/σ) + t2/2σ2 > ln(2/
√
2πδ)

(20)

Taking t = σ2ϵ/∆−∆/2, we get

ln
((
σ2ϵ/∆−∆/2

)
/σ
)
+
(
σ2ϵ/∆−∆/2

)2
/2σ2

> ln(2/
√
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π

1

δ

)
.

(21)

Let us write σ = c∆/ϵ; we wish to bound c. We begin
by finding the conditions under which the first term is non-
positive.

1

σ

(
σ2 ϵ

∆
− ∆

2

)
= c− ϵ

2c
(22)

Since 0 < ϵ < 1 and c ≥ 1, we have c− ϵ
2c ≥ c−1/2. Thus

1
σ

(
σ2 ϵ

∆ −
∆
2

)
≥ 1 provided c ≥ 3/2. We can therefore

focus on the t2/σ2 term.

(
1
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2
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[
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1

2
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(
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1
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(
c2 − ϵ+ ϵ2/4c2

)
(23)

In the range c ≥ 1, the derivative of
(
c2 − ϵ+ ϵ2/4c2

)
with

respect to c is positive. Then we have c2 − ϵ + ϵ2/4c2 >
c2 − 8/9 and it suffices to ensure

c2 − 8/9 > 2 ln

(√
2

π

1

δ

)
(24)

which is satisfied c2 > 2 ln
(
1.25
δ

)
.

Now considering R = R1 ∪ R2, where R1 = {x ∈ R :
|x| ≤ c∆/ϵ} and R2 = {x ∈ R : |x| > c∆ϵ}. Fix any
subset S ⊆ R, and define

S1 = {M(x) + x | x ∈ R1}
S2 = {M(x) + x | x ∈ R2}

(25)

Then we have

Pr
x∼N (0,σ2)

[M(x) + x ∈ S]

= Pr
x∼N (0,σ2)

[M(x) + x ∈ S1] + Pr
x∼N (0,σ2)

[M(x) + x ∈ S2]

≤ eϵ Pr
x∼N (0,σ2)

[M(x) + x ∈ S1] + δ

(26)
yielding (ϵ, δ)-DP for the Gaussian mechanism.




