
A. Private Vision Transformer Inference

A.1. Overview of Private ViT Inference

We illustrate the framework of private ViT inference to
help readers to better understand our architecture. As shown
in Figure 2, the server holds the model weight while the
client holds the input data. The client only send the secret
share of data to the server to keep data private and the server
keeps the weight private. In MPC, two parties, i.e., server
and client, compute functionalities, e.g., linear and non-
linear layers jointly with MPC protocols like Cheetah [22]
and SEMI-2K [9], and finally the client learns the inference
results without extra information about the model weights
while the server does not learn any information about the
client’s data.

A.2. ViT Architecture

For the ViT [11] architecture, it takes image patches as
input and is composed of an input projection layer, a stack
of Transformer layers, and a task-specific multi-layer per-
ceptron (MLP) head. Each layer consists of an multi-head
attention (MHA) layer and an MLP block. With MPC pro-
tocols, we have demonstrated that the communication bot-
tleneck mainly comes from non-linear Softmax and GeLU.

Softmax Softmax includes max, exponential and recipro-
cal operations, all of which are very expensive in MPC:

Softmax(xi) =
exi−xmax∑n
j=1 e

xj−xmax
.

Note that max is widely used in Softmax to improve nu-
merical stability [60]. Figure 11(a) shows our method to
optimize Softmax in MHA.

GeLU GeLU is an activation function based on the Gaus-
sian error function [20], which is defined as:

GeLU(x) = x · 1
2
[1 + erf(

x√
2
)],

where erf(·) is the Gaussian error function. For MPC,
GeLU is usually approximated with tanh:

GeLU(x) = 0.5x(1 + tanh[

√
2

π
(x+ 0.044715x3)]),

or
GeLU(x) = x · σ(1.702x).

Figure 11(b) shows our method to optimize GeLU in
MLP.

X

ReLU Softmax 
Attention

Scaling 
Attention

X

GeLU

α 1-α

SUM

SUM

β 1-β

Identity

(a) Attention Optimization (b) GeLU Optimization

Figure 11. Visualization of our proposed MPCViT and MPCViT+.

CIFAR-10 CIFAR-100

To
p-

1 
A

cc
ur

ac
y 

(%
)

To
p-

1 
A

cc
ur

ac
y 

(%
)

40 5045 55 60 40 5045 55 60
Latency (s) Latency (s)

93.4

93.6

93.8

94.0

94.2

76.0

76.5

77.0

77.5

Figure 12. Comparison of layer-wise and token-wise GeLU opti-
mization of MPCViT+.

Exponential Exponential is used in Softmax, but expo-
nential cannot be directly computed in MPC, so it is gener-
ally approximated as

ex = lim
n→∞

(1 +
x

2n
)2

n

,

where n is the number of approximation iterations.

Reciprocal Reciprocal is widely used in various func-
tions, including Softmax, ReLU Sofmax, 2Quad, etc. Re-
ciprocal in MPC is usually approximated using Newton-
Raphson iteration [1]:

1

x
= lim

n→∞
yn = yn−1(2− xyn−1),

where y0(x) = 3e0.5−x + 0.003 which makes the approxi-
mation work for a large input domain [30].

B. Cryptographic Primitives for MPC
In this section, we briefly describe the relevant cryp-

tographic primitives for MPC. From the description, we
can better understand the communication overhead brought
from MPC during model inference.

B.1. Additive Secret Sharing

Additive secret sharing is widely used in arithmetic se-
cret sharing (AS) [52]. Specifically, for an l-bit value
x ∈ Z2l , it is additively shared between two parties, denoted
as ⟨x⟩l0 and ⟨x⟩l1, respectively, such that x = ⟨x⟩l0 + ⟨x⟩l1



mod 2l (where + denotes addition in Z2l ). AS is generally
implemented by generating a pair (r, x − r), where r is a
random number. As illustrated on the left side of Figure 2,
we use the share algorithm Sharel(x) to split an input into
two shares. Conversely, we use reconstruction algorithm
Reconstl(⟨x⟩l0, ⟨x⟩l1) recover the actual result to the client.
Note that, in AS, the communication of addition operation
is free because addition can be locally computed.

B.2. Oblivious Transfer

Oblivious Transfer (OT) is the central cryptographic
primitive for building MPC protocols to realize secure ViT
private inference. OT [3, 45] enables the receiver to choose
one message obliviously from a set of messages sent from
the sender without revealing his choice. For 1-out-of-k
OT, the sender holds k l-bit messages m0,m1, ...,mk−1 ∈
{0, 1} and the receiver holds a choice bit b ∈ [k]. At the
end of OT protocol, the receiver learns mb but cannot learn
any other massages, while the sender learns nothing. Corre-
lated OT (COT) is another form of OT, and 1-out-of-2 corre-
lated OT is widely used, e.g., SiRNN [50]. Specifically, the
sender inputs a correlation x ∈ Z2l and the receiver inputs
a choice bit b ∈ {0, 1}. The protocol generates a random
value r ∈ Z2l to the sender and −r + b · x to the receiver.(
k
1

)
-COTl requires (2λ+ kl)-bit and 2 rounds communica-

tion.

B.3. Garble Circuit

Garble Circuit (GC) [63] enables two parties to jointly
compute an arbitrary function f(·) without revealing their
private information. GC has three main phases: 1) garbling,
2) transferring and 3) evaluation. First, the function f(·) is
represented as a boolean circuit C. Then, the Garbler en-
coded the boolean circuit as a garbled circuit C̃ and a set
of input-correspondent labels in the first phrase. After gar-
bling phrase, the Garbler sends C̃ to another party who acts
as the Evaluator together with the correct labels for the in-
put wires of the circuit. The Evaluator computes the circuit
gate-by-gate and produces an encoding of the output. Fi-
nally, the Evaluator shares this encoding with the Garbler
and learns the actual plaintext result.

C. Details of Attention Variants
In this section , we formally describe the formulations of

different attention variants mentioned in §3.

Linformer [58] [60] takes Linformer as an efficient
Transformer variant because Linformer significantly re-
duces the dimenstion of matrix QKT .

Linformer(Q,K, V ) = Softmax(
Q(EK)T√

dk
) · (FV ),

where Q,K, V ∈ Rn×dk are queries, keys and values, re-
spectively. E,F ∈ Rk×n are two linear projection matrices
added on K,V to compress the tensor size of QKT .

ReLU/ReLU6 Attention ReLU/ReLU6 attention di-
rectly replaces Softmax with ReLU/ReLU6. We take ReLU
attention as an example and ReLU6 attention can be ob-
tained by simply replacing ReLU with ReLU6 activation.

ReLUAttention(Q,K, V ) = ReLU(
QKT

√
dk

) · V.

Sparsemax Attention [40] proposes the Sparsemax ac-
tivation function to enable to output sparse probabilities.
Sparsemax is defined as

Sparsemax(z) =

 1, if t > 1;
(t+ 1)/2, if − 1 ≤ t ≤ 1;
0, if t < −1.

Thus, Sparsemax attention is defined as

SparsemaxAttention(Q,K, V ) = Sparsemax(
QKT

√
dk

)·V.

Note that Sparsemax can not only used for computing the
output possibilities, but also for attention through replacing
Softmax with Sparsemax in order to remove the expensive
exponential. However, Sparsemax requires more compari-
son operations.

XNorm Attention [53] XNorm is proposed by UFO-ViT
[53] and is also called cross-normalization that normalizes
Q and KTV along two different dimensions to construct
the linear attention:

XNormAttention(Q,K, V )

=XNormdim=filter(Q)(XNdim=space(K
TV )),

XN(a) :=
γa√∑h
i=0∥a∥2

,

where γ is a learnable parameter and h is the hidden dimen-
sion.

2Quad Attention [33] 2Quad approximation is proposed
by MPCFormer [33], which replaces ex with (x + c)2 as
follows:

2QuadAttention(Q,K, V ) =
(QKT

√
dk

+ c)2∑n
i=1(

QKT
√
dk

+ c)2i
· V.

In our experiments, we set c to a very small value to make
the training process robust.



Table 6. Comparison of MPCViT and ReLU Softmax ViT with
different number of heads via head pruning method.

Dataset
CIFAR-10 CIFAR-100

Accuracy (%) Latency (s) Accuracy (%) Latency (s)

1-head 92.48 50.88 73.25 51.12
2-head 92.83 57.65 73.99 57.84
3-head 93.03 66.21 74.61 66.70

MPCViT 93.38 63.56 75.38 63.79

D. The Algorithm Flow of MPCViT

Here, we show the algorithm details of our proposed
MPCViT pipeline. As shown in Algorithm 1, the pipeline is
mainly divided into two steps: search and retrain. We first
initialize a ReLU Softmax ViT and jointly optimize the net-
work θ and architecture parameter α. After searching, we
selectively replace a set of ReLU Softmax attention with
an MPC-eficient Scaling attention based on the top-k rule.
Then, in order to boost the performance of MPCViT with
heterogeneous attention, we retrain the ViT with knowl-
edge distillation. The algorithm flow is almost the same
with MPCViT+, and we can jointly optimize network θ and
two architecture parameters α, β during the search.

E. Layer-Wise VS. Token-Wise GeLU Opti-
mizatin of MPCViT+

The choice of GeLU optimization can be different gran-
ualirties including layer-wise and token-wise, both of which
support to fuse two linear layers for a better efficiency. Ex-
periments in §5.5 use token-wise granularity as an example,
and here we compare layer-wise and token-wise GeLU op-
timization for a better choice. Since the proportion of GeLU
and MatMul are small in the ViT model on Tiny-ImageNet,
we here consider the model on CIFAR-10 and CIFAR-100
as shown in Figure 12. The results are evaluated with KD.
On CIFAR-10, MPCViT+ with layer-wise GeLU optimiza-
tion has a little better Pareto front than token-wise optimiza-
tion, while on CIFAR-100, token-wise optimization is a lit-
tle better than layer-wise optimization.

F. More Distributions of Attention Architec-
ture Parameters

In §5.4, we enumerate four situations to show the con-
sistency and scalability of our NAS algorithm. To empir-
ically verify the consistency more sufficiently, we supple-
ment more cases of architecture parameter α for each atten-
tion head. On CIFAR-10, we fix the number of heads to 4
and modify the hyper-parameter λ to even smaller values,
i.e., 10−5 and 10−6. As shown in Figure 13, the trend is
still similar under different settings as Figure 9.

A
lp

ha
 V

al
ue

Head Index

0.0

0.2

0.4

0.6

0.8

0 5 10 15 20 25

λ=1e-5, # Heads=4
CIFAR-10

A
lp

ha
 V

al
ue

Head Index

0.0

0.2

0.4

0.6

0 5 10 15 20 25

0.8

λ=1e-6, # Heads=4
CIFAR-10

Figure 13. The distribution of architecture parameter α on CIFAR-
10 with different Lasso coefficient λ.

G. More Analysis: MPCViT Optimization VS.
Pruning Method

Our method is similar to pruning as we aim at removing
“unimportant” modules in NNs. Like [8], here we analyze
the advantage of our method.

Many methods [41, 56, 62] prune a subset of attention
heads to improve the efficiency of Transformers. The for-
mulation of head pruning is defined as

MHA =

N∑
i=1

z(i)Att(Q(i),K(i), V (i)),

where z(i) ∈ {0, 1} is a mask variable for MHA. However,
this way losses the benefit of multi-head, leading to a worse
representation ability. Here, we give an example shown in
Table 6. Note that the ViT architecture on CIFAR-10/100
cannot support three heads since the hidden dimension is
256, so we just modify 256 to 258 with a negligible latency
change. As we can observe, MPCViT outperforms head
pruning with higher accuracy and lower latency. The re-
sult also indicates the necessity of including the ScaleAttn
in MPCViT. Instead of cutting attention heads, our method
selectively replaces expensive attention with MPC-efficient
attention without compromising the accuracy.

For MPCViT+, according [8], our proposed GeLU lin-
earization actually reduces the GeLU count while unstruc-
tured pruning still remains more GeLUs. Compared with
structured pruning, MPCViT maintains more parameters in
the network [8], achieving a better performance.



Algorithm 1: Pipeline of Our Proposed MPCViT
Input: ViT with ReLU Softmax attention: fθ; ratio of RSAttn budget µ; searching epochs: Es; training epochs: Et;

Lasso coefficient: λ; total number of ViT heads: N .
Initialize the architecture parameter α = 1.0 for all attention heads in fθ.
θ ← (θ, α).
while epoch ≤ Es do

Compute loss: Lsearch with the ℓ1-penalty term;
Update θ with AdamW optimizer;
Adjust learning rate with the cosine scheduler.

Sort the alpha values across the heads in fθ, and find the µN -th largest α, denoted as α∗.
if α ≥ α∗ then

α← 1.0
else if α < α∗ then

α← 0.0
Obtain the searched heterogeneous ViTs under different latency constraints with binarized α : fθ′ .
Fix α and retrain fθ′ to improve its accuracy as follows:
while epoch ≤ Et do

Compute loss: Ltrain with two types of KD techniques, i.e., Llogists and Lfeature;
Update θ′ with AdamW optimizer;
Adjust learning rate with the cosine scheduler.

Output: Accurate and efficient MPC-friendly ViTs with heterogeneous attention fθ′ .
Linearize ScaleAttn by scaling factor decomposition during inference time to accelerate computation. // Optional




