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1. Derivation of Formulas

1.1. Derivation of Lemma 1

Lemma 1 Given two Gaussian distribution Np and Nq , the
KL divergence F (Np||Nq) is
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Proof. Assuming that p(x) ∼ Np(µp, σ
2
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The second term of Eq 2 can be simplified as∫
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Substituting the Eq 3 and Eq 4 into Eq 2, the KL diver-

gence F (Np||Nq) is obtained as
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1.2. Derivation of Lemma 2

Lemma 2 Given two multi-Gaussian distribution P =∑i=M
i=1 αp
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p
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bound of KL divergence F (P ||Q) is
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Proof. According to the log sum inequality [1], for non-
negative numbers a1, a2, ..., am and b1, b2, .., bm:
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with equality if and only if ai

bi
is a constant. The inequation

6 can be derivated as follows:
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2. Architecture of Uncertainty-aware Refine-
ment Module

As shown in Figure 1, we use two convolutional layers
with leaky-ReLU to regress the uncertainty map U with the
weighted variances αt × σT and disparity map µ̄ as the in-
puts. Subsequently, the uncertainty map is concatenated
with the disparity map and the left features to feed into a
4-layer dilated convolutional network, regressing the resid-
ual map R. Finally, we execute a disparity fusion process to
obtain the final disparity map according to the Eq 11 of the
main text.
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Figure 1. The structure of uncertainty-aware refinement module.

3. Ablation Study Details
As mentioned in Section 4.3 of the main text, we imple-

ment three different methods to compare with our param-
eterized cost volume. The first is the single Gaussian dis-
tribution with fixed variance (SGFV). We take the RAFT-
stereo [4] as the implementation of it.

The second one is the single Gaussian distribution with
an adaptive variance (SGAV). The initial disparity µ0 is set
to 0, and the initial variance σ0 is 8. For the t-th iteration,
the disparity candidates Dt = {dt1, dt2, ..., dtN} are sampled
from a range [µt − kσt, µt + kσt] uniformly where k is

0.5 and N is 9. We calculate the costs based on the dispar-
ity candidates and then use the costs to predict the offsets
Ot = [ot1, o

t
2, ..., o

t
N ] and probabilities P t = [pt1, p

t
2, ..., p

t
N ]

for the candidates. The thin volume is constructed as V =
[(dt1+ot1, p

t
1), (d

t
2+ot2, p

t
2), ..., (d

t
N +otN , ptN )]. We regress

the disparity dt+1 and σt+1 as follows:
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t
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t
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σt+1 is clipped to avoid numerical explosion. dt+1 and
σt+1 are used for the next iteration. The µt+1 and the dti+oti
are supervised to close to the ground truth.

The third method is based on the multiple Gaussian dis-
tribution with fixed variance (MGFV). We initialize 4 points
d ∈ {0, 64, 128, 192} to search for the ground truth. For
each point, we use the sampling strategy of RAFT-Stereo
to sample the disparity candidates for each Gaussian distri-
bution and predict the updates of means and weights. The
weighted average of the means at the last iteration is re-
garded as the final disparity. All the methods use the L1
loss used in RAFT-Stereo [4] to supervise the disparity se-
quences. We set the number of iterations to 6 for training
and 4 for testing.

4. Supplementary Results of Experiments
4.1. Uncertainty-aware Refinement

We visualize the error maps of the last iteration and the
uncertainty maps in Figure 2. It can be seen from the white
boxes that regions with high uncertainty are generally corre-
lated with large errors, which demonstrates the uncertainty-
aware characteristics of our refinement module.

Method
D1-bg

(%)
D1-fg
(%)

D1-all
(%)

Time
(ms)

PCW-Net [9] 1.29 2.93 1.53 440
DeepPruner(best) [2] 1.71 3.18 1.95 180

CREStereo [3] 1.33 2.60 1.54 410
RAFT-Stereo [4] 1.45 2.94 1.69 380

AANet+ [11] 1.49 3.66 1.85 60
DeepPruner(fast) [2] 2.13 3.43 2.35 60

HITNet [10] 1.54 2.72 1.74 20
Dec-Net [13] 1.89 3.53 2.16 50

PCVNet (ours) 1.56 2.98 1.8 56

Table 1. The comparison of algorithms on non-occluded pixel ar-
eas in the KITTI 2015 dataset [5].

4.2. KITTI2015

In Table 1, we present the results of different methods
on non-occluded pixel areas. As shown in the table, our



Figure 2. Visualization of the left image (left), error map (center) and uncertainty map (right).

Figure 3. Qualitative results of our method on the booster test set.



Method Time
(s)

All NonOcc
Bad1.0

(%)
Bad2.0

(%)
A50
(px)

A90
(px)

Bad1.0
(%)

Bad2.0
(%)

Bad4.0
(%)

avgerr
(px)

rms
(px)

A50
(px)

A90
(px)

A95
(px)

A99
(px)

CFNet [8] 0.69 26.2 16.1 0.53 8.37 19.6 10.1 6.49 3.49 15.4 0.48 2.23 16.4 77.6
HITNet [10] 0.14 20.7 12.8 0.45 3.92 13.3 6.46 3.81 1.71 9.97 0.40 2.32 4.26 30.2

HSMNet [12] 0.51 31.2 16.5 0.62 4.26 24.6 10.2 4.82 2.07 10.3 0.56 2.12 4.32 39.2
DeepPruner [2] 0.13 57.1 36.4 1.41 17.9 52.3 30.1 15.9 4.80 14.7 1.17 10.4 23.6 67.7
CREStereo [3] 3.55 14.0 8.13 0.38 1.63 8.25 3.71 2.04 1.15 7.70 0.26 0.92 1.58 22.9

RAFT-stereo [4] 11.6 15.1 9.37 0.37 2.24 9.37 4.74 2.75 1.27 8.41 0.28 1.10 2.29 21.7
PCVNet(ours) 0.18 25.5 13.6 0.54 3.06 19.5 8.19 3.71 1.53 8.71 0.49 1.75 3.08 24.1

Table 2. The supplementary results on Middlebury 2014 dataset [7].

method performs better than other methods with a runtime
smaller than 100 ms except HITNet [10]. Nevertheless, it is
important to note that our method surpasses HITNet across
all pixel areas, as detailed in Table 2 of the main text, which
reveals that our method can handle the occlusion regions
better than HITNet.

4.3. Middlebury

Table 2 is the supplementary results of Table 3 in the
main text. The Badx means the xpx-error rate and avgerr
and rms represent the average absolute error and the root-
mean-square error, respectively. The metric Ax in the table
is the x-percent error quantile in pixels.

Our method performs well on the avgerr, rms, A90,
A95 and A99, but get slightly less impressive results on
the Bad1.0 and Bad2.0. It reveals that our model leads
to fewer distinct outliers but could be better at fine-grained
matching with high-resolution inputs. This might be be-
cause of the sparsity of the sampling and can be improved
by increasing the number of sample points or slightly in-
creasing the number of iterations to allow the variance to
thoroughly converge.

4.4. Booster

Figure 3 shows the visualization of our disparity map on
the booster dataset [6]. Our method exhibits remarkable
performance in texture-less regions, as well as in challeng-
ing areas with reflections and transparency.
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