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1. More Experimental Analysis
1.1. Number of Prompt Tokens

In this section, we investigate the impact of prompt num-
bers in IDPT on classification tasks. By default, we use
three layers of EdgeConv [2] and one layer of MLP to
extract the semantic information EP ∈ Rm×d from all
patches and then use max pooling along the feature dimen-
sion to aggregate the semantic information of all patches to
generate prompt PN−1 ∈ R1×d.

To generate multiple representative prompts, we replace
the max pooling operation along the feature dimension
with a top-K operation, resulting in K prompts P

′

N−1 ∈
RK×d. We then aggregate P

′

N−1, cN−1, and EN−1 and
feed them to the last transformer layer fN .

[cN ;P
′

N ;EN ] = fN ([cN−1;P
′

N−1;EN−1]). (1)

For the classification head, we perform max pooling
along the feature dimension of P

′

N to obtain PN ∈ R1×d

as prompt-related input.
We analyze the impact of different prompt numbers on

classification tasks. Figure 1 presents the experimental re-
sults on two variants of ScanObjectNN. The results indicate
that simply increasing the prompt number does not con-
tribute to performance gain. Therefore, we only set a single
prompt in IDPT to improve efficiency.

1.2. Insert Independent Prompt Generation Mod-
ules to All Layers

In Figure 4 of the main paper, we have demonstrated the
effect of inserting prompts into multiple layers of the pre-
trained point cloud model. Note that we share the prompt
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Figure 1. Effect of different numbers of prompts.

generation module among multiple layers in Figure 4 in the
spirit of parameter-efficient tuning. Nevertheless, it would
be interesting to see the results of inserting independent
prompt generation modules into different layers. In partic-
ular, here we provide the results of all-layer insertion, as
shown in Table 1. The results indicate that incorporating a
parameter-independent prompt generation module at every
layer only brings marginal improvement with a significant
increase of trainable parameters, deviating from the goal of
parameter-efficient tuning. Regarding the empirical obser-
vations in Figure 4 of the main paper and Table 1, we only
insert the dynamic prompt generation module into the last
layer of the pre-trained model.

Trainable Parameters Type #TP (M) OBJ_BG OBJ_ONLY

1 PM + Head 1.70 92.48 92.19
12 PM + Head 16.34 92.60 92.22

Table 1. Effect of inserting independent prompt modules to all lay-
ers. PM indicates the dynamic prompt generation module.

1.3. Input of Downstream Task Head

We conducted an investigation on the impact of the
downstream task head’s input features, which include the
prompt token, the CLS token, and the max pooling of point
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Figure 2. Effect of different head inputs.

patch tokens. The results are shown in Figure 2. We found
that the highest performance was achieved when all three
features were included (d): prompt token, CLS, and point
patch tokens. When using only the dynamic prompt token
(b), the performance was still strong and only second to the
previous case. However, removing our prompt token (c) re-
sulted in a slight decline in performance. These results in-
dicate that the dynamic prompt token plays a critical role in
guiding the downstream task fitting, as it contains specific
and semantic information about the task data.

Although omitting the prompt feature in the head results
in a performance decline, there is still a significant improve-
ment when compared to traditional static prompts, as shown
in Table 6. This suggests that our dynamic prompt is effec-
tive in aligning with different distributional data.

1.4. Compare IDPT with Full Fine-tuning

Although fine-tuning with full trainable parameters en-
ables more flexible adaptation, it is not always an opti-
mal solution for downstream transfer. One possible issue
is over-fitting the training set, which harms the generaliz-
ability. In particular, we investigate the accuracy dynamics
of different tuning strategies with Point-MAE throughout
training, as shown in Figure 3. We can see IDPT outper-
forms fine-tuning on test sets, despite slightly inferior per-
formance on train sets. This phenomenon demonstrates the
structural flexibility of IDPT in domain adaptation and also

indicates that it regularizes the model against over-fitting
better. Besides, the efficacy of IDPT is not simply owed
to the parameter-efficient setting, because VPT-Deep with
a similar proportion of trainable parameters does not show
satisfactory performance as IDPT does. Instead, the re-
sults provide evidence for the superiority of the proposed
instance-aware dynamic prompt design.

Train: Fine-tuning > IDPT > VPT-Deep

Test: IDPT > Fine-tuning > VPT-Deep

Figure 3. The convergence curves of training and testing.

1.5. Convergence of Different Tuning Strategies

In this section, we study how the performances of dif-
ferent tuning strategies change in the whole training pro-
cess. The accuracy curves of fine-tuning, VPT, and IDPT
on two datasets (i.e., ModelNet40 and ScanObjectNN) are
illustrated in Figure 4.

As shown in Figure 4, our IDPT strategy achieves signif-
icant improvements upon VPT. The performance of IDPT
is competitive with fine-tuning on most datasets. Moreover,
we can learn that IDPT yields faster convergence by incor-
porating prior semantic information of instances, revealing
the merit of instance-aware dynamics for model adaptation.

1.6. Demonstration of Sub-modes in Real-world
Point Cloud Data

Due to the limitations of scanning techniques, it is pre-
vailing to see various kinds of missing or noisy points in
real-world point clouds, corresponding to different sub-
modes in the data distribution. Such inconsistent noises will
threaten the robustness of prompt-based adaptation, espe-
cially for static prompt strategies like VPT [1]. Here we
would like to give some point cloud samples to facilitate
an intuitive understanding about how different sub-modes
look like. Specifically, Figure 5 presents different miss-
ing types w.r.t. different categories in the ScanObjectNN
dataset. We use sub_mode1 and sub_mode2 to differentiate
missing types. For each scanned object, we show its pro-
jection images from three different viewpoints (i.e. view1,
view2, and view3) to simulate stereoscopy.
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Figure 4. The classification accuracy curves of fine-tuning, VPT, and our IDPT strategy on two datasets.
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Figure 5. Different sub-modes in each category of ScanObjectNN
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