HopFIR: Hop-wise GraphFormer with Intragroup Joint Refinement for 3D
Human Pose Estimation Supplementary Material

In this supplementary material, we provide additional
details and ablation studies that were not included in the
main manuscript due to space constraints. Section 1 intro-
duces more ablation experiments to investigate the effec-
tiveness of the HA layer. Section 2 provides more details
about the structure of our proposed HG module. Section 3
shows intuitive descriptions for k-hop. Section 4 visualizes
the k-hop attention weight matrices and intragroup attention
weight matrices. Section 5 presents additional qualitative
results for comparison.

1. Effectiveness of the HA Layer
1.1. Comparison of Grouping the k-hop Joints

In section 4.3 of the main manuscript, we demonstrate
how the HopFIR architecture can be used without the hu-
man body prior by using a random graph instead of the
skeleton graph. We constructed three random graphs based
on the number of edges in the human skeleton graph to com-
prehensively explore the effectiveness of grouping k-hop
joints. These graphs were comprised of 15 edges, 30 edges,
and all nodes connected. Due to the maximum number of
edges corresponding to the fully connected graph and its
specificity in GCN, we randomly generate fully connected
graphs with varying edge weights. Notably, we explored
up to three hops, consistent with the approach taken for the
skeleton graph. For the fully connected graph, we generate
three fully connected graphs to represent its three hops.

As shown in Table 1, the performance improves as the
number of edges of the random graph increases, but re-
mains inferior to that based on the human skeleton graph.
This is because as the number of edges in a random graph
increases, the number of possible combinations also in-
creases. Therefore, each node can aggregate more infor-
mation during the feature updating process. However, the
lack of human body prior restricts the discovery of human
joint synergies. Nevertheless, grouping the joints by k-hop
neighborhood is more effective than using self-attention be-
tween nodes or learning nonlinear mappings for each node.

[ MLP  Transformer [ RG(15) RG(30) RG(Max) Skeleton

MPJPE | 36.59 36.21 35.39 34.85 34.68 32.67
P-MPJPE | 29.21 27.77 28.80 27.89 27.94 26.20

Table 1. Quantitative comparison of HopFIR on random graphs.
RG denotes random graph, and the elements in parentheses de-
note the number of edges in the respective random graph, where
Max signifies the fully connected graph. MLP and Transformer
refer to replacing the HA layer in HopFIR with the corresponding
modules.

Method | Channels | Params | MPJPE | P-MPJPE
SemGCN [3] 128 027M | 42.14 33.53
SemGCN + HA(HSS) 128 0.49M | 3841 30.56
SemGCN + HA(SSS) 128 0.49M | 41.30 33.07
SemGCN + HA(SHH) 128 0.49M | 38.81 31.05
SemGCN + MLP 128 0.57M | 4297 33.87
SemGCN + Transformer 128 0.86M 43.78 34.87
SemGCN [3] w/ Non-local [2] 128 0.43M | 40.78 31.46
SemGCN w/ Non-local +HA(HSS) 128 0.66M | 38.03 30.50
SemGCN w/ Non-local +HA(SSS) 128 0.66M | 37.75 30.17
SemGCN w/ Non-local +HA(SHH) 128 0.66M | 37.94 29.71
SemGCN w/ Non-local + MLP 128 0.73M | 39.36 30.93
SemGCN w/ Non-local + Transformer 128 1.03M 43.86 34.62
Modulated GCN [4] 128 0.29M | 38.25 30.06
Modulated GCN +HA(HSS)+W 128 0.96M | 36.54 29.09
Modulated GCN +HA(SSS)+W 128 0.96M | 36.14 29.02
Modulated GCN +HA(SHH)+W 128 0.96M | 37.38 30.02
Modulated GCN + MLP 128 1.03M | 39.12 30.93
Modulated GCN + Transformer 128 1.03M 39.22 29.33

Table 2. Comparison of performance changes for various methods
upon adding MLP or Transformer with a relatively larger set of
parameters compared to adding HA Layer.

1.2. Performance Comparison of the HA Layer

We provide a performance comparison of various meth-
ods added with MLP or Transformer in Table 2. The results
indicate that the HA layer is more effective in exploring the
correlation between the node and k-hop group compared to
intra-node self-attention or non-linear mapping of individ-
ual nodes.

2. HG Module

The HG module is a variant of HGF designed for the
output layer, which structure is shown in Fig. 1. In the HG
module, the first FC layer maps the feature channel to the
final output channel, but with a size of 3. This dimension is
too small for a multi-head self-attention mechanism. Con-



sequently, we have opted to remove the HA layer and em-
ploy HopGCN for information aggregation.
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Figure 1. The details of the HG module. Arrows of different
colors represent different hops.

3. Intuitive descriptions for k-hop

Fig. 2 shows intuitive descriptions for k-hop. (a) shows
the 1-hops of joints 0 and 8. (b) shows the 3 hops (S4, S,
S3) of joint 9.

4. Attention Weight Matrix

We visualize k-hop attention weight matrices in the HGF
modules in Fig. 3 and self-attention weight matrices for the
global skeleton graph and limb groups in Fig. 4. Three ac-
tions from the human3.6M [1], namely Discussion, Phon-
ing, and Purchases, were randomly selected for analysis. In
Fig. 3, one can see that each joint attends different groups
in different actions. In Fig. 4, one can see that the periph-
eral joints in the MHSA layer in the IJR module do not pay
attention to the other intragroup joints, whereas the MHSA
layers within each group can attend to them. The results
indicate that HopFIR can effectively aggregate peripheral
joint information, and that peripheral joint representations
can extract useful information from their associated limbs.
Moreover, the IJR module promotes the HGF module to dis-
cover the latent synergies among joints, which is manifested
in two ways: (1) IJR modules improve the performance of
HGF which decreases the MPJPE to 32.67 mm and (2) [JR
modules accelerate the learning process of HGF modules,
i.e., HopFIR networks without IJR modules need 38 epochs
to converge to 35.30 mm and converge to 35.19 mm at the
57th epoch.

(a) 1-hops

(b) 3-hops

Figure 2. Intuitive descriptions for k-hop. S¥ denote the k-hop
group of the joint ¢.

5. Qualitative Experiments

Fig. 5 presents additional visualization results obtained
by HopFIR on the Human3.6M. In addition, we provide
some qualitative results on wild images in Fig. 6. Despite
being trained on the Human3.6M dataset, HopFIR is capa-
ble of achieving satisfactory results in unseen scenes.
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Figure 3. Visualization of k-hop attention weight matrix.
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Figure 4. Visualization of the intragroup self-attention weight matrix.



Figure 5. More qualitative visual results of our method and MGCN [4] on Human3.6M dataset [1]. The black lines are Ground Truth(GT)
and the red lines are predictions by HopFIR and MGCN.
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Figure 6. Visualization results of the HopFIR on in-the-wild images.




