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This supplementary material is organized as follows.

• Sec. 1 provides additional experiments. We highlight
the conclusions here:

– The scene bias problem is a general problem that
exists in four different backbones (i.e., I3D [3],
SlowFast [5], TSM [9], and TPN [12]).

– Our SOAR successfully mitigates the scene
bias, and achieves state-of-the-art OSAR perfor-
mance with three additional backbones (i.e., Slow-
Fast [5], TSM [9], TPN [12]), showing the gener-
alization ability and effectiveness of our method.

– The ablation study on UCF101 [11] +
HMDB51 [8] reveals that all designs con-
tribute to the final performance, demonstrating
the generalization ability of our method.

• Sec. 2 introduces additional implementation details.

1. Additional experimental results
1.1. Comparison with the state-of-the-art

In the main paper, we have shown that our SOAR out-
performs previous methods in terms of lower scene bias
and higher OSAR performance with the I3D backbone [3].
To validate that the superiority of SOAR is not tied to a
specific backbone, we carry out experiments with differ-
ent backbones, i.e., SlowFast [5], TSM [9], and TPN [12].
Furthermore, to analyze how the scene distance affects the
overall OSAR and closed-set classification performance, we
carry out the scene bias analysis experiments using Open
maF1 as the metric.
Scene bias analysis with different backbones. Fig. 1,
Fig. 2, and Fig. 3 shows the scene bias analysis experiments
with TPN [12], TSM [9], and SlowFast [5] backbones, re-
spectively. We make the following observations. (1) All
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figures show the same tendency: known actions with unfa-
miliar scenes (right part of the left figures) and unknown
actions with familiar scenes (left part of the right figures)
are hard to recognize. This conclusion holds for all back-
bones, indicating that it is a general problem rather than a
backbone-specific problem. (2) Our SOAR achieves lower
scene bias in both scenarios with all backbones, showing
the generalization ability and debias ability of our method.
Especially, our SOAR achieves better OSAR performance
when the closed-set testing set exhibits dissimilar scene to
the training set (i.e., the right part of Fig. 1a, Fig. 2a, and
Fig. 3a), and when the open-set testing set exhibits similar
scene to the training set (i.e., the left part of Fig. 1b, Fig. 2b,
and Fig. 3b). Such a performance advantage shows that our
method successfully avoids the misleading of scene infor-
mation, and further demonstrates its debias ability. We note
that this ability is critical when the testing environment is
different from the training environment.
OSAR performance comparison with different back-
bones. Tab. 1 lists the performance comparison with pre-
vious OSAR methods in different backbones. The results
show that our SOAR achieves state-of-the-art OSAR per-
formance and outperforms all previous methods in terms of
AUC and open macro F1 with all backbones, demonstrating
the effectiveness of our method.
Scene bias analysis using Open maF1. In Fig. 2 of the main
paper, we show a strong correlation between OSAR perfor-
mance and the scene distance. We further illustrate how
the scene distance affects the overall OSAR and closed-set
classification performance (i.e., the C + 1 way classification
performance) by conducting the scene bias analysis using
Open maF1 in Fig. 4. The results reveal a similar trend
that the scene distance and Open maF1 is highly correlated,
and our SOAR achieves the best performance as well as the
lowest scene bias, demonstrating its effectiveness.

1.2. Ablation study on UCF101 [11]+HMDB51 [8]

To demonstrate the generalization ability of our proposed
AdRecon and AdaScls, we further show the results of the
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(a) Analysis on the known action in unfamiliar scene scenario.
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(b) Analysis on the unknown action in familiar scene scenario.
Figure 1. Quantitative scene bias analysis using UCF101 [11] as known and MiTv2 [10] as unknown with the TPN backbone [12].
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(a) Analysis on the known action in unfamiliar scene scenario.
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(b) Analysis on the unknown action in familiar scene scenario.
Figure 2. Quantitative scene bias analysis using UCF101 [11] as known and MiTv2 [10] as unknown with the TSM backbone [9].
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(a) Analysis on the known action in unfamiliar scene scenario.
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(b) Analysis on the unknown action in familiar scene scenario.
Figure 3. Quantitative scene bias analysis using UCF101 [11] as known and MiTv2 [10] as unknown with the SlowFast backbone [5].



Backbone Methods UCF101 [11]+MiTv2 [10] UCF101 [11]+HMDB51 [8] Closed-set
AUC ↑ FAR@95 ↓ TPR@10 ↑ Open maF1 ↑ AUC ↑ FAR@95 ↓ TPR@10 ↑ Open maF1 ↑ Accuracy

TPN [12]

SoftMax 43.36 97.82 8.89 55.01± 0.32 44.92 97.33 6.42 72.31± 0.12 92.00
OpenMax [2] 60.02 73.93 23.02 65.31± 0.19 62.65 64.23 19.30 65.32± 0.12 55.37

MC Dropout [6] 90.86 32.59 72.51 71.96± 0.19 84.89 64.76 57.19 77.47± 0.14 91.28
BNN SVI [7] 90.23 32.23 67.86 69.57± 0.19 84.93 66.82 58.82 75.38± 0.15 90.11

DEAR [1] 90.31 33.67 68.32 73.57± 0.19 85.16 62.72 57.14 84.82± 0.14 92.02
SOAR (Ours) 91.45 30.96 74.37 74.48± 0.21 86.67 61.02 60.62 85.43± 0.14 92.63

TSM [9]

SoftMax 46.39 94.45 9.35 54.29± 0.34 44.58 98.44 9.32 76.29± 0.19 92.11
OpenMax [2] 61.49 58.90 12.49 64.30± 0.25 60.97 63.83 10.46 64.39± 0.17 53.48

MC Dropout [6] 87.87 41.69 61.22 65.67± 0.26 84.82 63.67 63.53 75.68± 0.20 92.15
BNN SVI [7] 89.92 40.42 72.66 65.94± 0.25 83.28 65.96 54.31 77.63± 0.19 91.83

DEAR [1] 89.12 38.98 68.07 67.33± 0.36 84.26 57.79 62.16 86.05± 0.17 91.94
SOAR (Ours) 90.47 37.17 69.69 69.33± 0.21 85.96 60.62 65.98 87.67± 0.17 92.49

SlowFast [5]

SoftMax 56.02 89.33 15.54 61.12± 0.26 55.39 91.58 20.57 75.02± 0.15 96.17
OpenMax [2] 68.49 39.38 10.48 69.74± 0.17 67.00 77.54 25.35 66.46± 0.16 60.33

MC Dropout [6] 95.01 18.21 88.99 71.12± 0.16 89.52 53.95 75.82 73.35± 0.15 96.24
BNN SVI [7] 94.83 20.51 87.37 68.92± 0.19 88.68 60.88 74.05 71.14± 0.16 96.01

DEAR [1] 95.12 20.35 87.63 75.51± 0.17 89.33 58.78 75.95 89.71± 0.17 96.56
SOAR (Ours) 95.72 18.84 90.68 76.47± 0.14 90.72 52.32 76.93 90.64± 0.19 96.53

Table 1. Comparison with state-of-the-art methods with different backbones. All methods are trained on UCF101 [11], and evaluated on two
different open sets where unknown samples are from HMDB51 [8] and MiTv2 [10], respectively.
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(a) Analysis on the known action in unfamiliar scene scenario.
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(b) Analysis on the unknown action in familiar scene scenario.
Figure 4. Quantitative scene bias analysis using Open maF1, which combines the OSAR and closed-set action recognition performances.
The experiments are carried out with the I3D backbone [3], using UCF101 [11] as known and MiTv2 [10] as unknown. Our SOAR is least
affected by the scene.

AdRecon Bg. Unc. AUC ↑ FAR@95 ↓ TPR@10 ↑ Open maF1 ↑Est. Weight
- - - 85.63 78.59 68.10 87.73± 0.22
X - - 85.72 82.66 71.63 86.68± 0.21
X - X 87.17 69.82 70.46 88.08± 0.20
X X - 86.95 70.18 71.76 88.01± 0.21
X X X 87.49 69.41 72.31 89.52± 0.21

Table 2. Ablation study on the adversarial reconstruction on
UCF101 [11] + HMDB51 [8] datasets.

ablation study in the UCF101 [11]+HMDB51 [8] testing set
in Tab. 2 and Tab. 3, respectively. The results reveal that all
designs in both modules contribute to the final performance,
which aligns with the conclusion made in the main paper,
demonstrating the generalization ability of our method.

Ls cls Ls guide AUC ↑ FAR@95 ↓ TPR@10 ↑ Open maF1 ↑
- - 85.63 78.59 68.10 87.73± 0.22
X - 86.87 73.42 68.48 87.42± 0.23
X X 87.22 71.45 69.80 87.47± 0.19

Table 3. Ablation study on the adversarial scene classification on
UCF101 [11] + HMDB51 [8] datasets.

2. Additional implementation details

For the TPN backbone [12], we follow DEAR [1] to use
the slow-only version for feature extraction. For the TSM
backbone [9], we use the default setting in MMAction2 [4]
for feature extraciton following DEAR [1]. For the SlowFast
backbone [5], we interpolate the extracted spatio-temporal
features from the slow and fast pathways to the same size,
and concatenate them in the channel dimension as the final



spatio-temporal feature F .
We note that our reported results are different from those

reported in DEAR [1] as they use binarized prediction for
the AUC prediction, which only has one operating point on
the ROC curve, while we use the raw prediction for the AUC
computation.
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