Towards Generic Image Manipulation Detection with
Weakly-Supervised Self-Consistency Learning
— Supplementary Material —

Yuanhao Zhai  Tianyu Luan

David Doermann

Junsong Yuan

University at Buffalo

{yzhai6, tianyulu, doermann, jsyuan}@buffalo.edu

1. Additional Experimental Results

We conduct a set of additional ablation study with MIL-
FCN [10] as the baseline.

Robustness comparison with fully-supervised methods.
We apply JPEG compression and Gaussian blur separately
on CASIAv1 [3] to evaluate the robustness of our method.
As shown in Fig. 1a and Fig. 1b, our method effectively de-
fends against JPEG compression, especially under the OOD
evaluation, where our method significantly outperforms all
competing methods. As for the Gaussian blur, our method
resists mild Gaussian blur, but is vulnerable to the blur with
large kernel sizes, as shown in Fig. Ic and Fig. 1d. While
this limitation highlights the need for further research and
optimization to improve our method’s resistance to Gaussian
blur, it also offers valuable insights into the challenges of
robustness in image manipulation detection.

Ablation study on the early fusion architecture. In our
method, we use a late fusion architecture to fuse multi-source
information. We further evaluate our method on the early
fusion architecture, where different sources are concatenated
in the channel dimension at input. The results are listed
in Tab. 1. Note that multi-source consistency learning and
ensemble-supervision inter-patch consistency learning do
not apply to the early fusion architecture, and thus are ex-
cluded. The results show both adaptive pooling and self-
supervision inter-patch consistency learning individually im-
prove the performance of the early fusion architecture, and
their combination leads to the best performance, demonstrat-
ing the effectiveness of our method under the early fusion
architecture. Furthermore, under most settings, the perfor-
mances in early fusion underperform their counterparts in
late fusion. Especially, early fusion performances even un-
derperform several single stream performances in late fusion.
Such results show early fusion architecture cannot fully uti-
lize each single source under the weakly-supervised setting,
and a late fusion design is needed for the weakly-supervised
image manipulation detection and localization.
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(a) IND manipulation detection un-
der JPEG compression.

(b) OOD manipulation detection un-
der JPEG compression.
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(c) IND manipulation detection un-  (d) OOD manipulation detection un-
der Gaussian blur. der Gaussian blur.

Figure 1. Robustness evaluation against JPEG compression and
Gaussian blur.  All methods are trained on CASIAvl [3].
CASIAV2 [3, 4] is used for IND testing, and the average results on
Columbia [6], Coverage [1 1] and IMD2020 [9] are used for OOD
testing. Our method is robust against JPEG compression, and mild
Gaussian blur.

Image-Level
AUC  Spe.  Sen. Fl

- - 0.597 0.134 0.700 0.225 | 0.126 | 0.161

v - 0.611 0.158 0.750 0.261 | 0.142 | 0.184

- self | 0.641 0.166 0733 0271 | 0.158 | 0.200

v oself | 0.682 0.219 0.771 0.341 | 0.177 | 0.233
Table 1. Ablation study on early fusion architecture on
IMD2020 [9], where the concatenation of RGB image, Bayar noise
map and SRM noise map is fed into a single model. AP is an
abbreviation for adaptive pooling.
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2. Additional Implementation Details

For unsupervised methods, we use implementations pro-
vided by the MKLabl', and block size of 2 are used for both
CFAL [5] and NOI1 [8] algorithms.

For the results of fully-supervised methods (HP-FCN [7],
Mantra-Net [12], CR-CNN [13], and GSR-Net [14]) on
NIST16, Columbia, CASIAv] and Coverage, we use the
reproduced results provided by [ 1, 2]. And the results of the
rest of the data are reproduced by us.
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