Supplementary Material for ’3D-Aware Neural Body Fitting for Occlusion
Robust 3D Human Pose Estimation”

A. Volume Rendering Equations

We provide the mathematical derivation of the analytic
form of the volume rendering equation in Equation 4 of the
main article. Here we leave out the camera parameters 11
by modeling in the camera coordinate. In the camera coor-
dinate, a ray passing through pixel (¢, j) can be written as,
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where (O, O,) is the principal point of the camera and f
is the focal length. Then the volume density along the ray

at the k-th Gaussian kernel is,
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Intuitively, I is the global maximizer of pg(r(¢)) that
gives the peak density of the k-th Gaussian kernel which is
exp (gi)- This enables us to calculate the integral for T'(¢)
in Equation 4,
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where erf(z) is the Error Function. Then we can analyti-
cally calculate the integral of volume rendering as,
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Here we assume the Gaussian kernels are far from the cam-
era relative to its scale so that ¢, =~ —oo and t; =~ oo.

B. Experiments
B.1. Evaluation on Human3.6M

We further evaluate our method on Human3.6M [I]
dataset for reference. Note that this dataset is not our main
focus because 1) it does not have any occlusion; 2) it is
indoor setting and the train/test data are quite similar so the
performance is highly saturated (e.g., for input image of size
224 %224, assuming a 170cm tall human occupies the whole
image, a 1px shift in the image space would correspond to
7.6mm already). Here we report the performance of other
SOTA methods with the same ResNet50 backbone for a fair
comparison. As shown in Table 1, we achieve SOTA per-
formance.

B.2. Comparison to Multi-modal Methods

We further compare 3DNBF with a SOTA multi-modal
method [7], which models the conditional distribution of 3D
human pose given the test image, on 3DPW-AdvOcc@80.
Note that we only evaluate visible keypoints which ex-
cludes a certain amount of ambiguities. We run the official
implementation and the mode prediction achieves MPJPE:
215.7 (74.9 1), PA-MPJPE: 97.1 (25.3 1), and PCKh: 71.7
(13.4]). The 5-sample best scores are MPJPE: 146.5
(5.8 1), PA-MPJPE: 80.7 (9.0 1), and PCKh: 75.8 (9.2 |).
This shows that our model outperforms also the multi-
modal baseline. Although modeling multi-modal distribu-
tions is promising for handling severe occlusion, we con-
sider it orthogonal to our approach.

B.3. Visualization of Image Features

We visualize the image features and pose predictions un-
der varying occlusion levels in Fig. 1. The predicted corre-
spondences between pixels and Gaussian kernels from the
UNet features are color-coded. We can observe that the in-
dividual image features are quite robust to occlusion, only
starting to get distorted when the occluder is about half the
size of the human. However, as the features in the non-
occluded regions are still predicted well, our method is able
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MPJPE| PA-MPJPE|
HMR [3] 88.0 56.8
SPIN [5] 62.3 41.7
HMR-EFT [2] - 46.0
PARE [4] 82.7 53.7
3DNBF 58.7 38.9

Table 1. Evaluation on Human3 . 6M protocol 2.

to correctly predict the non-occluded joints due to the robust
likelihood (Eq.3)

GT Corr.

Figure 1. Visualizing image feature and pose estimation under
varying occlusion levels. Left: GT image-3D correspondence.
Right top to bottom: input occluded image, PARE output, our
3DNBEF output, and predicted image-3D correspondence.

B.4. More Analysis of NBV compare to Mesh rep-
resentation.

In our ablation study, the mesh baseline is implemented
with the 3D-aware features, the contrastive training, and
the robust likelihood. Compared to the mesh representa-
tion with SoftRas [6], the volume representation is analyti-
cally differentiable and hence can provide better gradients,
particularly in the case of self-occlusion, due to the better
volume density blending compared to the distance-based
blending used in SoftRas. Fig. 2 illustrates the optimiza-
tion process under self-occlusion with a mesh representa-
tion and our NBV. We set 0=10"3, 'y=10*2, and K=40 for
SoftRas which is consistent with the parameters used in the
ablation. Note how initially the right arm is estimated to be
behind the body, but from iteration 40 can be corrected to
be in front of the body.

B.5. Qualitative Results

In Fig. 4, 5 and 6, we provide more qualitative results
for 3DNBF comparing with state-of-the-art 3D human pose
estimation methods on 3DPW-AdvOcc@40 and 3DPW-
AdvOcc@80. Qualitative results on 3DOHS0K are pro-
vided in Fig. 7. The comparison between our 3DNBF and
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Figure 2. NBV better handles self-occlusion than mesh represen-
tion+SoftRas.
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Figure 3. Failure cases where our model confuses front and back.

optimization-based methods: EFT [2] and 3D POF [&] are
visualized in Fig. 8 and 9 respectively.

B.6. Limitations and Failure Cases

While being robust to occlusion, our method do have
some limitations, which we leave for future work. The limi-
tations of our method are: 1) the inference speed is not real-
time; 2) more detailed body models may explain the ob-
served features better and improve accuracy; 3) it should be
extended to multi-person scenarios. One of the main failure
cases we observe is the occasional front-back switch errors
when the head is occluded as shown in Figure 3.
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Figure 4. Qualitative results on 3DPW-AdvOcc @40 and 3DPW-AdvOcc@80. For left to right are the input image, (a) initial pose predicted
by SPIN [5], (b) 3DNBF prediction and (c) ground truth pose.
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Figure 5. Qualitative results on 3DPW-AdvOcc @40 and 3DPW-AdvOcc@80. For left to right are the input image, (a) initial pose predicted
by HMR-EFT [2], (b) 3DNBF prediction and (c) ground truth pose.
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Figure 6. Qualitative results on 3DPW-AdvOcc @40 and 3DPW-AdvOcc@80. For left to right are the input image, (a) initial pose predicted
by PARE [4], (b) 3DNBF prediction and (c) ground truth pose.
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Figure 7. Qualitative results on 3DOHS0K [9]. For left to right are the input image, (a) initial pose predicted by regression-based methods,
(b) 3DNBF prediction and (c) ground truth pose. Row 1-2, 3-4, and 5-6 are results for SPIN [5], HMR-EFT [2], and PARE [4] respectively.
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Figure 8. Qualitative results on 3DPW-AdvOcc @40 and 3DPW-AdvOcc@80. For left to right are the input image, (a) Optimization results
of EFT [2], (b) 3DNBF prediction and (c) ground truth pose. Initial poses are predicted by HMR-EFT [2].
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(a) 3DPOF (b) 3DNBF (¢) GT

Figure 9. Qualitative results on 3DPW-AdvOcc @40 and 3DPW-AdvOcc@80. For left to right are the input image, (a) Optimization results
of 3DPOF [£], (b) 3DNBF prediction and (c) ground truth pose. Initial poses are predicted by HMR-EFT [2].






